
3.9 Solving Logarithmic Equations

Add the following rule:

$$
a^{\log _{a} x}=x
$$

Verify the rule by calculating:
$10^{\log 5} 5510^{\log 7}=7=1.265$

Using the "new" rule
Simplify:

When solving logarithmic equations, the goal is to make one of the following situations occur.

1. Have a single log on one side of the equation (or nested logs) equaling a number
2. Have a single log on one side of the equation (or nested logs) equaling a log with the same base
a. If the bases are not the same... you will have to change the base so that they are the same.

Solve algebraically:

$$
\begin{aligned}
& \log _{2}(x-3)+\log _{2}(x+1)=5 \\
& \log _{2}[(x-3)(x+1)]=5 \\
& 2^{5}=(x-3)(x+1) \\
& 32=x^{2}+x-3 x-3 \\
& 0=x^{2}-2 x-35 \\
&=(x-7)(x+5) \\
& x=7 \text { or }-5
\end{aligned}
$$

$$
\begin{aligned}
& \log (6-x)-2 \log x=0 \\
& \log \frac{6-x}{x^{2}}=0 \\
& 10^{0}=\frac{6-x}{x^{2}} \\
& x^{2}+x-6=0 \\
& (x+3)(x-2)=0 \\
& x=-3 \text { or } 2
\end{aligned}
$$

