$$
\text { 5.3 Graphing } y=a \sin (b(x-c))+d \text { and } y=a \cos (b(x-c))+d
$$

a -- Amplitude
 b - Period change (chapter 1 - horizontal expansion/compression)
 c - Phase shift
 d - Vertical displacement

In chapter 1, we graphed vertical expansion/compressions, next, horizontal expansion/compressions, and then translation left/right, and finally up/down.

When graphing in chapter 5 we can graph in a slightly different order to speed up the process. We can do this because of the repetitive(periodic) function as well as the range of the initial function is always $-1 \leq y \leq 1$. The order for chapter 5:

1. Graph vertical displacement \& amplitude at the same time
2. Graph the period change
3. Phase shift the graph
3) translations

For example:

NOTE: The scale of the graph is important. Count the number of "squares" from 0 to 2π to determine the scale of the graph.

$$
\text { period } \frac{2 \pi}{\frac{1}{2}}=2 \pi \cdot \frac{2}{1}=
$$

Determine the following properties of the function without graphing:
$y=7 \cos \left(\frac{2}{3}\left(x-\frac{\pi}{6}\right)\right)-4$
Amplitude:

Vertical Displacement:

$$
-4
$$

Phase Shift:

Period:

$\frac{2 \pi}{\frac{2}{3}}=\frac{6 \pi}{2}=3 \pi$
Maximum:

$$
y=3
$$

Minimum:

$$
y=-11
$$

$y=-7 \sin \left(\frac{9}{2}\left(x-\frac{\pi}{2}\right)\right)+2$
Amplitude:

Phase Shift:

Period:

$\frac{1 \pi}{2}$

$\frac{4 \pi}{9}$
Maximum:

Minimum:
$y=-5$

Fast way to calculate the period: period $=\frac{2 \pi}{b} \ldots$ but we can also use the ideas from chapter 1 (thinking it as a horizontal compression/expansion).

Example: A sinusoidal function has a maximum at $\left(\frac{\pi}{8}, 12\right)$, the next minimum is at $\left(\frac{3 \pi}{4},-4\right)$. Determine a sinusoidal function that best represents this situation (hint use cosine...)

1) 16 units of height
$\therefore a=8$
2) $\max \frac{\pi}{8} \rightarrow \frac{3 \pi}{4} \quad \frac{\pi}{8} \rightarrow \frac{6 \pi}{8}$

$$
\frac{2 \pi}{b}=\frac{10 \pi}{8}
$$

$$
\frac{2 \pi}{10 \pi}(8)=b
$$

$$
\frac{8}{5}=5
$$

3) max $0 \frac{\pi}{8}$

