5.5 Modeling with Trigonometric Functions:

Johnny gets on a Ferris Wheel, it has a radius of 25 m and the centre is 30 m of the ground. Two complete revolutions take 180 seconds. Johnny gets on the Ferris Wheel at the bottom.
a. Graph Johnny's height, h, at any time t.
b. Write a sinusoidal function that represents Johnny's height h at any time t.
c. Predict Johnny's height at 152 seconds
d. What is the first time that Johnny is 20 m off the ground.

$$
\begin{gathered}
\rightarrow h_{m . n} @ 5 \mathrm{~m} \\
\rightarrow h_{\text {max }} e 55 \mathrm{~m} \\
\rightarrow P=90 \\
\rightarrow \text { Pealc } \rightarrow \text { Trough } \\
\therefore 50 \\
\therefore a=25
\end{gathered}
$$

graph starts at
\max / \min
\therefore-corine

$$
\rho \rightarrow T=50
$$

$$
\therefore a=25
$$

No phage Change $\therefore C=0$

$$
P=90
$$

$$
f(t)=h
$$

$$
b=\frac{2 \pi}{90}
$$

$$
=\frac{\pi}{45}
$$

$$
\begin{aligned}
u_{1} d & =u p 30 \\
f(157) & =-25 \cos \left(\frac{\pi(52)}{45}\right)+30 \\
& =39.4 \mathrm{~m}
\end{aligned}
$$

$$
f(t)=-25 \cos \left(\frac{\pi t}{45}\right)
$$

Written/Edited by:

$$
\left.\begin{array}{rl}
\text { Epp/Poelzer/Smith/Turner/Presta/Robertson/Simpson/Morgan/Hilton } \\
\rightarrow \frac{45}{\pi} \cos ^{20}\left(\frac{20}{-25}\right. \\
16.6,
\end{array}\right)=t
$$

The maximum height of a tide at Tofino on a certain day is 60 cm , this occurs at 1 AM . The next low tide is 10 cm and this occurs at 8 AM .
a. Graph the height of the water, h at any time, t.
b. Determine a sinusoidal function of the height of the water, h at any time, t.

