Adding and Subtracting

Friday, April 22, 2016 9:43 AM

Adding and Subtracting

Just remember what these guys taught you!

Remember when multiplying was hard, and adding was easy?

We'll do a quick example to see how much you remember / know about adding fractions.

$$
\begin{aligned}
& \frac{3}{x^{3}}\left(\frac{4}{x^{3}}\right)=\frac{12}{x^{6}} \\
& \rightarrow \frac{3+8-4}{x^{3}}+\frac{8}{x^{3}}-\frac{4}{x^{3}}
\end{aligned}=\frac{7}{x^{3}} \quad x \neq 0
$$

Here's your algorithm. (The steps you need to take every time: I'll wait for you to write it down, Devon)

1. State the restrictions.
> Always. Every question. Every time. You can not divide by zero. It is nonsensical.
2. Find a common denominator.
$>$ This is the step that makes adding difficult. \leftarrow
3. Write an equivalent fraction
$>$ Be able to write one denominator with all the numerator stuff above one line.
4. Add and subtract like terms in the numerator.
5. Make sure your final answer is simplified.

$$
\begin{aligned}
\frac{2 x}{3}-\frac{x-2}{3} & =\frac{2 x-2}{3} \\
& =\frac{2 x-x+2}{3}=\frac{x+2}{3}
\end{aligned}
$$

You try these two. Follow the algorithm:

$$
\begin{array}{c|c}
\frac{3 x}{x+2}+\frac{6}{x+2} & \frac{x^{2}}{x-3}+\frac{x}{x-3}-\frac{12}{x-3} \\
=3^{2} \quad x \neq-2 & =x+4 \\
\frac{3 x+6}{x+2} & \frac{x^{2}+x-12}{2}
\end{array}
$$

$$
\begin{aligned}
& x+2 \\
= & \frac{3(x+2)}{x+2} \\
= & 3
\end{aligned}=\frac{x-3}{x+3}=x+4
$$

Ok, all those were "best case scenario" you will not have questions that already have a common denominator. Getting one will be your job. Expect to do this every question.

$$
\begin{gathered}
x \downarrow \not x^{3} \downarrow \\
\frac{5 m}{6}-\frac{3 m}{4}+\frac{m}{8} \leftarrow
\end{gathered}
$$

There are 2 ways to get your common denominator. The best way is to see that $6(3)=4(4)=8(2)=6.24$

However, if you cant see the \qquad common denominator like that you can always multiply all the bottom terms together to get a common denominator. $6(4)(8)=192 \ldots$ big numbers usually do not make the question easier though... $\uparrow \uparrow$

$$
8 \rightarrow 24
$$

$$
4 \rightarrow 24
$$

$$
6 \rightarrow 24
$$

$$
\begin{aligned}
& \frac{5(4) m-3(6) m+3 m}{24} \\
& \frac{20 m-18 n+3 m}{24}=\frac{5 n}{24}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
x^{3} & x^{4} \\
\downarrow \\
\frac{(2 n-7)}{8 n}-\frac{3 n-4}{6 n} \\
\uparrow & \uparrow
\end{array} \\
& \text { common denommatar } \\
& 8 \rightarrow 24 \\
& 6 \rightarrow 24
\end{aligned}
$$

$$
\begin{aligned}
& 8,6 \\
& n \neq 0 \\
& =\frac{6 n-21-12 n+16}{24 n}=\frac{-6 n-5}{24 n}=-\frac{6 n+(5)}{24 n}
\end{aligned}
$$

Rational Expressions Page 5

$$
\begin{aligned}
& \text { (bx) } \frac{3 x^{2}}{\frac{(23)}{2}+\frac{(1)}{102}-\frac{0}{(5 x)}=\frac{6 x(2 y)+3 x^{2}-2(6)}{30 x^{3}}} \\
& =\frac{12 x y+3 x^{2}-12}{30 x^{3}}=\frac{3\left(4 x y+x^{2}-4\right)}{3(10) x^{3}}
\end{aligned}
$$

Let's kick it up a notch!

$$
\begin{aligned}
& \frac{1}{a}+\frac{1}{b}=\frac{1}{a b} \\
& x \neq-5,3 \frac{x^{-3}}{\frac{x+5}{4}+\frac{(x+5)}{4-3}}=\frac{2 x(x-3)+3 x(x+5)}{(x+5)(x-3)} \\
&=\frac{2 x^{2}-6 x+3 x^{2}+15 x}{(x+5)(x-3)} \\
&=\frac{5 x^{2}+4 x}{(x+5)(x-3)}=\frac{x(5 x+9)}{(x+5)(x-3)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6}{2 x-4}-\frac{3}{3 x-6} \\
& =\frac{x(3 x-6)-3(2 x-4)}{(2 x-4)(3 x-6)}=\frac{3 x^{2}-6 x-6 x+12}{2(x-2) 3(x-2)} \\
& =\frac{3\left(x^{2}-4 x+4\right)}{3(2)(x-2)^{2}}=\frac{(x-2)(x-2)}{2(x-2)^{2}}=\frac{1}{2} \\
& \uparrow \\
& x \neq 2 \\
& \frac{x-1}{x^{2}+x-6}-\frac{5}{x^{2}-x-12} \quad x^{2}+x-6 \\
& \frac{x-1}{\frac{(x+3)(x-2)}{T}}-\frac{5}{(x+3)(x-4)} \\
& \rightarrow \frac{(x+3)(x-2)}{x^{2}-x-12} \\
& \rightarrow(x+3)(x-4) \\
& \frac{(x-1)(x-4)-5(x-2)}{(x+3)\left(\frac{x-2)(x-4)}{2}\right.}=\frac{x^{2}-4 x-x+4-5 x+10}{(x+3)(x-2)(x-4)} \\
& =\frac{x^{2}-10 x+14}{(x+3)(x-2)(x-4)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(x-1)}{\frac{\downarrow}{(x+3)(x-2)}}-\frac{x-2}{\frac{x-1}{x^{2}+x-6}}-\frac{x-2}{x^{2}+4 x+3} \\
& \frac{(x+1)(x+3)}{x}=\frac{(x-1)(x+1)-(x-2)(x-2)}{(x+3)(x-2)(x+1)} \\
&=\frac{x^{2}+x-x-1-\left(x^{2}-2 x-2 x+4\right)}{(x+3)(x-2)(x+1)} \\
&x \neq-3)^{\prime}=\frac{x^{2}-1-x^{2}+4 x-4}{(x+3)(x-2)(x+1)} \\
&=\frac{4 x-5}{(x+3)(x-2)(x+1)}
\end{aligned}
$$

Homework (the easy stuff):
Pg:336: \#1,2,4ab,5,12
Next Level: (to be handed in)
Pg: 336: 6,7,8,15ac

