Period: the time required for one complete cycle of a repeated event <= measured in units of seconds, variable $T=\frac{\text { seconds }}{\text { cycle }}$
Frequency: the number of complete cycles of a repeated event PER second $<=$ measured in units of $\operatorname{Hertz}(\mathrm{Hz})$, variable $f \quad f=\frac{1}{T}=\frac{1}{\left(\frac{\text { seconds }}{\text { cycle }}\right)}=\frac{\text { cycle }}{\operatorname{second}}=H z$.

A dismembered cat head bobs up and down 17 times in 68 seconds, find its period and frequency.

$$
\begin{aligned}
\text { Period }=T= & \frac{\text { seconds }}{\text { cycle }=}=\frac{68}{17}=4.0 \mathrm{~s} \\
& \text { frequency }^{17}=f=\frac{1}{4}=.25 \mathrm{~Hz} .
\end{aligned}
$$

Converting rpm to frequency: rpm (revolutions (cycles) per minute) $1800 \mathrm{rpm} 1800 \mathrm{rpm}=\frac{1800}{60}=30 \mathrm{~Hz}$.
Uniform circular motion: motion in a circle at a constant speed

$$
\begin{aligned}
& d=v t \\
& v=\frac{d}{t} \\
& v=\frac{2 \pi r}{T} \\
& =2 \pi r f
\end{aligned} \left\lvert\, \begin{aligned}
& a_{c}=\frac{v^{2}}{r}=\frac{(2 \pi r f)^{2}}{r}=4 \pi^{2} r f^{2}
\end{aligned}\right.
$$

There is a net force directed toward the center of your circle (F_{c}) centripetal force There is an acceleration in the direction of $F_{\text {net }}\left(F_{c}\right)$ called the centripetal accel (a_{c}) $F_{\text {net }}=m a$ then $F_{c}=m a_{c}$

The velocity is tangential to the circle The accel and Fca are directed radially

speed can be found using $v=\Delta d / \Delta t$

There are 3 types of circular motions

Vertical Circles

Tomorrow

A cat of mass 5.0 kg is swung on a 2.0 m long leash in radius 1.0 m .
Determine the velocity and frequency of the rotation!

$$
\begin{aligned}
& m=5 \mathrm{ky} \quad l=2 \mathrm{~m} \quad r=1 \\
& \sin \theta=\frac{1}{2} F_{y}=m \mathrm{~g} \\
& 2 A \mathrm{~m}
\end{aligned} \quad \mathrm{~F}_{\mathrm{F}} \quad \mathrm{~F}_{\mathrm{c}} \quad F_{g} \quad \tan 30^{\circ}=\frac{F_{c}}{F_{y}}
$$

$$
\begin{aligned}
& m a_{c}=\frac{m r^{2}}{r}= \\
& 28.3=5\left(\frac{v^{2}}{1}\right) \quad V=2.38 \mathrm{~m} / \mathrm{s} \\
& a_{c}=4 \pi^{2} r f^{2} \\
& f=.38 \mathrm{~Hz} .
\end{aligned}
$$

Conic Circles: these are horizontal circles caused when an object is swung in a CONE on a string
A cat of mass 5.0 kg is swung on a 1.2 m long leash through a fire in radius 0.60 m . Determine the Force of gravity, angle $\theta, \mathrm{F}_{\mathrm{T}}, \mathrm{F}_{\mathrm{c}}, \mathrm{v}, \mathrm{a}_{\mathrm{c}}$ and frequency

Circular motion in terms of frequency:

Horizontal circles on either a rotating disk or object travelling through a curve.

$$
\begin{aligned}
F_{c} & =F_{f} \\
\eta^{h} a_{c} & =m \phi g \\
\frac{v^{2}}{r_{c}} & =m g
\end{aligned}
$$

A nickel of mass 1.0 g is placed on a record of radius 12 cm , if the record rotates at 30 rpm (revolutions per minute) what minimum coefficient of friction is necessary to prevent the coin from sliding off?

$$
\begin{aligned}
m=1.0 \mathrm{~g} \quad r & =12 \mathrm{~cm} \quad 30=r p m \quad M: ? \\
0 \text { rpm }=\frac{30 \text { cycles }}{60 \text { seconds }} & =.5 \mathrm{~Hz} \rightarrow f \\
M g & =4 \pi^{2} r f^{2} \\
M & =\frac{4 \pi^{2}\left(12 \times 10^{-2}\right)(.5)^{2}}{9.8}=.12
\end{aligned}
$$

A lamborghini of mass 1000 kg travels through a corner of radius 50 m , at what maximum speed can it travel if the coefficient of friction is 0.85 between the tires and road?

$$
\begin{aligned}
& m=1000 \mathrm{~kg} \quad r=50 \mathrm{~m} \quad \mu=.85 \quad V=? \\
& F_{c}=F_{f} \quad V \\
& \frac{v^{2}}{r}=m g \quad \sqrt{\mu g r} \\
&=\sqrt{.85(9.8)(50)}
\end{aligned}
$$

