Complete the square

Completing the Square
We have seen the advantages of having our quadratic equation in vertex form.

$$
f(x)=a(x-p)^{2}+q
$$

This is very nice for graphing as we can find the shifts, stretches, and reflection very easily.

Completing the square is a useful technique for getting the vertex form of the equation when you begin with the standard form.

Example 1:
Complete the square for:

$$
A=1 \quad B=-8 C=5
$$

$$
y=x^{2}-8 x+5
$$

Here's how to do it:

1. Group the x-terms together.
2. Divide the ' x ' coefficient by 2 , Then square it. ie $\left(\frac{B}{2}\right)^{2}$
3. Add and subtract that value to your equation.
4. The result will be a perfect square. ie: easy factoring.

$$
\begin{aligned}
y & =\left(x^{2}-8 x\right)+5 \\
& =\left(x^{2}-8 x+16-16\right)+5 \\
& =(x-4)(x-4)-16+5 \\
& =(x-4)^{2}-11
\end{aligned}
$$

$$
\begin{aligned}
& y=\left(x^{2}+6 x\right)+5\left(\left(\frac{B}{2}\right)^{2}=\left(\frac{6}{2}\right)^{2}=(3)^{2}=9\right. \\
& y=\left(x^{2}+6 x+9-9\right)+5 \\
& y=\begin{array}{l}
(x+3)(x+3)-9+5 \\
=2 \cdot b=9 \\
= \\
=(x+3)^{2}-4
\end{array} \quad a+b=6 \\
& 3,3
\end{aligned}
$$

You try:

$$
\begin{aligned}
& \text { If } f(x)=\left(x^{2}-10 x\right)+6 \quad \text { III } y=\left(x^{2}-4 x\right)-3 \\
& \begin{aligned}
y & =\left(x^{2}-10 x+25-25\right)+6 \left\lvert\,\left(\frac{(10)^{2}}{2}\right)^{2}\right. \\
& =(x-5)^{2}-25+6 \\
& =(x-5)^{2}-19
\end{aligned}\left|\begin{array}{ll}
(-5)^{2} \\
& =25
\end{array}\right| \begin{array}{ll}
\left(\frac{-4}{2}\right)^{2} & y=\left(x^{2}-4 x+4-4\right)-3 \\
& =4 \\
& =(x-2)^{2}-4-3 \\
& =(x-2)^{2}-7
\end{array} \\
& (x-2)^{2}=(x-2)(x-2) \\
& x^{2}-2 x-2 x+4
\end{aligned}
$$

Rewrite into vertex form:
aka: complete the square to get standard form into vertex form.

$$
\begin{aligned}
& \frac{-25}{4}-\left[\begin{array}{l}
\frac{2}{0} \rightarrow 4 \\
\frac{-25}{4}
\end{array}\right]
\end{aligned}
$$

$$
f(x)=\left(x^{2}+5 x-2\right.
$$

$$
\left(\frac{3}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}=\frac{25}{4}
$$

$$
f(x)=\left(x^{2}+5 x+\frac{2 \pi}{4}-\frac{25}{4}\right)-2
$$

$$
f(x)=\left(x+\frac{5}{2}\right)^{2}-\frac{25}{4}-2
$$

$$
\begin{aligned}
& =\left(x+\frac{5}{2}\right)^{2}-\frac{25}{4}-\frac{8}{4} \\
& =\left(x+\frac{5}{2}\right)^{2}-33
\end{aligned}
$$

$$
=\left(x+\frac{5}{2}\right)^{2}-\frac{33}{4}
$$

What if the coefficient in front of x^{2} isn't equal to one?
Complete the square:

$$
\begin{aligned}
& f(x)=\left(3 x^{2}-12 x\right)-9 \\
& f(x)=3\left(1 x^{2}-4 x\right)-9 \\
& \left(\frac{-4}{2}\right)^{2}=(-2)^{2}=4 \\
& =3\left(x^{2}-4 x+4(-4)-9\right. \\
& =3(x-2)^{2}-4(3)-9 \\
& =3(x-2)^{2}-12-9=3(x-2)^{2}-21 \\
& y=-\left(x^{2}-6 x\right)-7 \quad\left[\frac{\left.x^{2}+6 x\right)-7}{2}\right]^{2}=\left(\frac{-6}{2}\right)^{2}=(-3)^{2}=4 \\
& y=-\left(x^{2}-6 x+9-9\right)-7 \\
& y=-(x-3)^{2}+9-7 \\
& y=-(x-3)^{2}+2 \\
& \text { vertex }(3,2) \\
& \begin{array}{l}
\operatorname{mx} \text { or inc } e y=2 \\
\text { ass of symmetry } x=3 \\
0:\{x \mid x \in \mathbb{R}\}
\end{array} \\
& R:\{y \mid y \leq 2, y \in \mathbb{R}\} \\
& f(x)=\left(2 x^{2}+8 x\right)-5 \\
& y=-2\left(x^{2}-4 x\right)-5 \\
& y=(-2)\left(x^{2}-4 x+4(-4)-5\right. \\
& y=-2(x-2)^{2}+8-5 \quad \text { vertex }(2,3) \\
& =-2(x-2)^{2}+3
\end{aligned}
$$

You try this one:

$$
f(x)=3 x^{2}+9 x-2
$$

hint: keep the fractions. Fractions are your friend.
\rightarrow complete the square
\rightarrow state the vertex
\rightarrow max or min @where.
\rightarrow axis of symmetry
\rightarrow domain
\rightarrow range

HW: pg192, Q:2,5,6,7,12ace (coefficient of one) pg192, Q:3,4,6bcd,7bc,8bc (not a coefficient of one)

