

$$
m=2 \cdot v=[W
$$

$W_{f}=?$

$$
W=A_{\Delta}=\frac{b h}{2}
$$

$$
=\frac{200\left(\frac{\alpha}{320}\right)}{2}
$$

$$
\begin{gathered}
\Delta E=\frac{n\left(v_{f}-v_{1}\right)^{2}}{2}=\frac{24}{2}\left(v_{f}\right)^{2}=32 k^{\alpha}=\Delta t \\
+\frac{32 k J}{}=v_{f}
\end{gathered}
$$

$$
\pm \sqrt{\frac{32 k J}{12}}=V_{f}
$$

$$
51.6 \frac{\mathrm{n}}{3}=
$$

$$
m=100 \mathrm{k}, \quad \theta=3^{0} \quad M=0
$$

$$
\begin{aligned}
& d_{x}=45 \cos (3)=44.9 \mathrm{~m} \\
& d_{y}=2.36 \mathrm{~m}
\end{aligned}
$$

$$
W=\Delta E=m s h
$$

$$
\begin{aligned}
& =(1000)(9.8)(2.36) \\
& =23 \mathrm{~kJ}
\end{aligned}
$$

what if $m=.30$

$$
\begin{aligned}
F_{f} & =\mu F_{r} \\
& =.3(\mathrm{mg} \cos \theta) \\
& =.3(1000)(9.8) \cos (3) \\
& =2900 \mathrm{~N} \\
W & =2900(44.9) \\
& =130 \mathrm{~kJ} \\
W_{\text {ret }} & =W_{1}+W_{2} \\
& =23 \mathrm{~kJ}+130 \mathrm{~kJ} \\
& =153 \mathrm{~kJ}
\end{aligned}
$$

1) I didn't knaw the bookklet was importart
2) Nots/ your/mine
3) Review notes
