Factoring (solve)

Wednesday, March 30, 2016 11:41 AM

Let's Solve This Stuff!

Last class we did a whole lot of factoring. But, we didn't actually solve any of the equations! That's what today is for.

Here's what we do:

1. Set our equation equal to zero
$>$ Sometimes you may need to rearrange the equation
2. Factor.
$>$ Completely. We must have all multiplied terms.
3. If everything is multiplied, we can make the claim that at least one of those things must be zero.
$>$ If $x y=0$ then either x or y must be zero.

Example time!

$$
\begin{aligned}
& \begin{array}{ll}
\begin{array}{l}
y \\
x^{2}-6 x+8=0 \\
L^{2}
\end{array} & a b=8 \\
a+6=-6
\end{array} \\
& \left(x^{2}-4 x\right)-(2 x+8)=0 \quad-4,-2 \\
& \underline{x}(x-4)-2(x-4)=0 \\
& (x-4)(x-2)=0 \quad x-4=0 \quad \text { or } x-2=0 \\
& 4 x^{2}+12 x=-9 \\
& \rightarrow 4 x^{2}+12 x+4=0 \quad a b=9(4)=36 \\
& \left(4, z^{2}+\right)^{\wedge}, ~ a+b=12 \\
& (2,20,1)+3(2+3) \\
& 2 x(2 x+3)+3(2 x+3) \\
& \frac{(2 x+3)(2 x+3)}{1} \frac{1}{2}=0 \\
& \frac{(2 x+3)^{2}}{T}=0
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow 6 x^{2}+2 x=0 \\
& 2 x(3 x+1)=0 \\
& 2 x=0 \text { or } 3 x+1=0 \\
& x=\frac{0}{2}=0 \quad 3 x=-1 \\
& x=-\frac{1}{3} \\
& \left.\longrightarrow 2(4 x-3)^{2}+74 x-3\right)+5=0 \\
& \text { Let } 4 x-3=R \\
& 2 R^{2}+7 R+5=0 \\
& a b=5(2)=10 \\
& \left(2 R^{\frac{k}{2}}+5 R\right)+(2 R \quad+5)=0 \\
& a+b=7 \\
& R(2 R+5)+(2 R+5)=0 \\
& (2 R+5)(R+1)=0 \\
& (2[4 x-3]+5)([4 x-3]+1)=0 \\
& (8 x-6+5)(4 x-3+1)=0 \\
& (8 x-1)(4 x-2)=0 \\
& 8 x-1=0 \text { or } 4 x-2=0 \\
& 8 x=1 \\
& 4 x=2 \\
& x=\frac{1}{8} \\
& x=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x(x-1)=\frac{2}{7} x \\
& x(x-1)=2 \\
& x^{2}-x-2=0
\end{aligned}
$$

$$
\begin{array}{rlr}
A_{x}^{2}+B x+C=0 & x=2,-1 \\
\rightarrow \frac{x}{3}+\frac{2}{6} & =5 & \\
\rightarrow \frac{2 x+2}{6} & =5 & x=14 \\
2 x+2 & =6(5) & \\
2(x+1) & =30 & \\
x+1 & =\frac{30}{2} & x=14 \\
x+1 & =15 &
\end{array}
$$

We could also ask you to find the quadratic equation that has specific roots...

Example: Write a quadratic equation with the given roots:

$$
\begin{aligned}
& (x+5)(x+3)=0 \\
& x^{2}+3 x+5 x+15=0 \\
& x^{2}+8 x+15=0
\end{aligned}
$$

$$
\begin{gathered}
\rightarrow 4,-2 \leftarrow \\
x^{2}-2 x-8=0 \\
x=-\frac{3}{2} \text { or } x=\frac{1}{4} \\
2 x=-3 \quad 4 x=1 \\
2 x+3=0 \quad 4 x-1=0 \\
(2 x+3)(4 x-1)=0 \begin{array}{l}
2 x+3=0 \\
8 x^{2}-2 x+12 x-3=0 \\
8 x^{2}+10 x-3=0
\end{array}
\end{gathered}
$$

Word Problem:
The Length of a lacrosse field is 10 m less than twice the width. The area of the field is $6,600 \mathrm{~m}^{2}$. Find the dimensions of the field.

$$
\begin{aligned}
A=6,600 m^{2} w \\
\hline l=2 w-10
\end{aligned} \quad \begin{aligned}
& A=l w= \frac{(2 w-10) w=6,600}{2 w^{2}-10 w=6,600} \\
& 2 w^{2}-10 w-6,600=0 \\
& 2\left(w^{2}-5 w-3,300\right)=0 / 2 \\
& w^{2}-5 w-3,300=0 \quad a b=-3300 \\
&\left(w^{2}-60 w\right)+(55-3300)=0 \quad-60,55=-5 \\
& w(w-60)+55(w-60)=0 \\
&(w-60)(w+55)=0
\end{aligned}
$$

$$
\begin{aligned}
& w-60=0 \quad \text { oR } w+55=0 \\
& w=60 \\
& \text { if } w=60 \text { then } \\
& l=2 w-10 \\
& =2(60)-10 \\
& =120-10 \\
& =110 \mathrm{~m} \\
& \text { Quiz on this next class } \\
& \text { HW: pg 230 } \\
& \# 7,9-11,12 a, 19,30
\end{aligned}
$$

