Pg, the real deal*

This force holds object in (approximately) circular orbits.

$$
1 S S=g \pi 9 \frac{\pi}{k_{g}}
$$

g is called: the GRAVITATIONAL FIELD STRENGTH a gravitational field is the bending of space-time by a mass.

$$
\begin{aligned}
& \vec{g}^{s}=\frac{G n}{r^{2}} \text { on Earth }=9.8 \frac{\mathrm{~N}}{\mathrm{~kg}} \\
& \vec{J}_{\text {min }}=6.67 \times 10^{-11}\left(\frac{7.35 \times 10^{22}}{(1.74 \times 106)^{2}}\right)=1.62 \frac{\mathrm{~N}}{\mathrm{~kg}}
\end{aligned}
$$

$$
\text { Find Eg Earth } \rightarrow \text { moon } 20 \quad \text { radius } \in \rightarrow M
$$

$$
\begin{aligned}
& \text { Earth } \rightarrow \text { moon radius } \quad=3.84 \times 10^{8} \mathrm{~m} \\
& =1.98 \times 10^{20} \mathrm{~N}
\end{aligned}
$$

A

$$
=\frac{G m_{1} r_{2}}{r^{2}}=
$$

The moon orbits the Earth, we can use this To find the mass of the Earth

geo \rightarrow Earth

Syn \rightarrow Sane chronous \rightarrow Time

Prove there is ONLY one radial distance from the Earth which allows for geosynchronous orbit.

$$
\begin{aligned}
& \text { Ff exists between any two masses and is given by: } \\
& F_{s}=\frac{G_{m_{1} m_{2}}^{2}}{r^{2}} \quad G=6.67 \times 10^{-11} \mathrm{~N} \frac{\mathrm{n}^{2}}{\mathrm{k}_{\mathrm{s}}^{2}}
\end{aligned}
$$

Prove there is ONLY one radial distance from the Earth which allows for geosynchronous orbit.

$$
\begin{aligned}
& 4 \pi^{2} r f^{2}=\frac{G m_{1} m_{2}}{r^{2}} \\
& \frac{4 \pi^{2} r^{3}}{G m_{1} m_{2}}=T^{2}
\end{aligned}
$$

In orbit there is no surface that objects rest upon, this means that $\mathrm{Fn}=\mathrm{ON}$

GEOSYNCHRONOUS (geostationary)

Apollo. 13
When in orbit an object is constantly
Accelerating toward the middle of circle, it is "freely falling" at $a_{c}=g$
effective

When free falling objects have apparent weight (Fn)=0 VOMit Comet
What is the apparent weight of an astronaut in orbit in the ISS?
\vec{g} of Jupiter is $\approx 25 \frac{\mathrm{~N}}{\mathrm{~kg}}$
Find the gravitational field (\vec{y}) at $4 x$

$$
\begin{array}{ll}
\text { Jupiter radius. } & r_{\text {Jupiter }}=70 \mathrm{Mm} . \\
& 70,000,000 \mathrm{~m}
\end{array}
$$

$$
\begin{aligned}
& \vec{g}=\frac{G m}{r^{2}} \\
& 25=\frac{6.67 \times 10^{-11} m \quad \text { decrease by } \frac{1}{16} \rightarrow \frac{1}{4^{2}}}{4 r)^{2}}
\end{aligned}
$$

Find the gravitational field strength at a HEIGHT of $3.0 \times 10^{6} \mathrm{~m}$ above Earth's surface.

$$
\begin{aligned}
\vec{S}=\frac{G_{m}}{r^{2}} & =\frac{6.67 \times 10^{-11}\left(5.98 \times 10^{24}\right)}{\left(6.38 \times 10^{6}+3.0 \times 10^{6}\right)^{2}} \\
& =\frac{4.53 \frac{\mathrm{~N}}{\mathrm{~kg}} G_{r}}{G g}
\end{aligned}
$$

Determine the orbital velocity at that HEIGHT!!!

$$
\begin{array}{rlrl}
F_{c} & =F_{y} & \\
v a_{c} & =m y & V & =6.52 \times 10^{3} \mathrm{~m} / \mathrm{s} \\
\frac{v^{2}}{r} & =g & & =6.5 \mathrm{kr} / \mathrm{s}
\end{array}
$$

Inverse Square Law

$$
\begin{aligned}
\vec{g} @ \text { Earth's Surface } & =9.8 \\
& =\frac{G m}{r^{2}}
\end{aligned}
$$

Find $\vec{g} @ 2$ Earth radii
Thomas:
"I could be the first man to never come at if a black hole."

Pentose
from center.

$$
\frac{G m}{(2 r)^{2}}
$$

3 Earth radii

$$
\begin{array}{r}
\vec{g}=\frac{G m}{(3 r)^{2}} \\
\quad 49
\end{array}
$$

"Beyond your. imagination."

imagination.

$$
\begin{aligned}
& \text { Big } \text { Sun. } \\
& \text { Fast } \approx 10 \% \\
& \text { An exoplanet has gravitational field strength } \\
& \text { Of } 36 \mathrm{~N} / \mathrm{kg} \text { at its surface, what is } \mathrm{g} \text { at a HEIGHT of } \\
& 5 \text { radii }
\end{aligned}
$$

\&

