Forces Practice

Section 1: F_{g}

1) Calculate the force of gravity on a 25 kg mass at the surface of the earth.
2) A 75 kg mass is on the surface of Mars when an astronaut lifts it with a sping scale.

The scale has a reading of 259 N . What is the gravitational field strength on Mars?
3) How much force must a horizontal surface exert to hold up a 2.0 kg book and what is the name of that force?

Section 2: $\mathrm{F}_{\text {net }}$

1) A cat is dragged at a constant velocity of $3.0 \mathrm{~m} / \mathrm{s}$ across sandpaper. What is the total force on the cat?
2) A 1200 kg car is pushed by three students from rest to $5.0 \mathrm{~m} / \mathrm{s}, 30 \mathrm{~m}$ along a level surface. What was the unbalanced force used on the car?
3) Assuming the force of friction on the car in problem 2 was 100 N how much combined force did the students have to exert?
4) What is the acceleration of a 5.0 kg mass when pulled with 10 N [E] and 12 N [N]?
5) What is the net force of a mass when pulled with a force of 10 N at $30^{\circ} \mathrm{S}$ of W and

12 N at $40^{\circ} \mathrm{W}$ of N .

Section 3: F_{f} and F_{n} (level surfaces)

1) A 10 kg mass is pulled along a level surface using a force of 25 N . What is the coefficient of friction?
2) A force of 7.5 N is used to pull a rubber friction block across a table at constant speed. If the coefficient of friction is 0.35 what is the mass of the block?
3) What shape is a graph of Ff vs. Fn and what is the slope?

Section 4: F_{e}

1) Calculate the extension of a spring whose spring constant is $20 \mathrm{~N} / \mathrm{m}$ when a 0.50 kg mass is hung on it.
2) What is the spring constant of a desk if a force of 784 N compresses it from height 1.00 m to 0.92 m ?

Section 5: Forces on ramps

1) What is the normal force and force down the ramp on a 5.0 kg mass resting on a 40° slope?
2) What is the acceleration of a 3.0 kg mass on a 30° frictionless slope?
3) What is the normal force on the mass in \#2 above?
4) What is the force of friction on the mass in \#3 above if $m=0.2$?
5) What would be the acceleration of the mass in \#4 above given $\mathrm{m}=0.2$?**
```
** tough question!
```

Answers:

1) 245 N
2) 0.245 m
3) $3.45 \mathrm{~m} / \mathrm{s}^{2}$
4) $9800 \mathrm{~N} / \mathrm{m}$
5) $19.6 \mathrm{~N}, \mathrm{Fn}$
6) 25.5 N
7) $3.12 \mathrm{~m} / \mathrm{s}^{2}$ at 50° NofE
8) 16.9 N at $14^{\circ} \mathrm{NofW}$
9) 0 N
10) $\mathrm{Fn}=37.5 \mathrm{~N}$ Fdown $=31.5 \mathrm{~N}$
11) 500 N
12) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
13) 600 N
14) 2.19 kg
15) linear, m
16) $3.20 \mathrm{~m} / \mathrm{s}^{2}$
