\qquad
\qquad

Chapter 8

Logarithmic Functions Assignment

1. a) Write $2^{5}=32$ in logarithmic form.
b) Write $\log _{3} m=n$ in exponential form.
2. Use the definition of a logarithm to evaluate $\log _{3} 81$. Show all work.
3. Determine the value of x in each.. Show all work.
a) $\log _{5} x=3$
b) $\log _{x} 8=\frac{3}{4}$
4. Rewrite each expression as a single logarithm.
a) $\log _{3} x^{2}+3 \log _{3} x-\log _{3} x$
b) $\log x-3 \log y+\frac{2}{3} \log z$
5. Use the laws of logarithms to simplify to a single log and then evaluate each expression.
a) $\log _{6} 3+\log _{6} 12$
b) $2 \log _{2} 12-\left(\log _{2} 6+\frac{1}{3} \log _{2} 27\right)$
6. Write each expression as a single logarithm in simplest form.
a) $2 \log x+3 \log \sqrt{x}-\log x^{3}$
b) $\log \left(x^{2}-25\right)-2 \log (x+5)$
7. Use the laws of logarithms to isolate x in the expression $\log _{5} 25 x=3$.
8. State the transformations, in order of application, to transform $y=\log _{c} x$ to $y=3 \log _{5}(4(x-2))+6$.
9. Write the equations that correspond to the following transformations of $y=\log _{5} x$ a) vertically stretched by a factor of 2 and translated 3 units to the left
b) reflected on the x-axis, stretched horizontally by a factor or $1 / 2$, translated 3 units to the right and 4 units up
10. For the equation $y=3 \log _{5}(6(x-2))-4$, state:
a) domain
b) range
c) equation of the asymptote
d) x-intercept (if it exists)
e) y-intercept (if it exists)
11. Sketch the graph of $y=-\log _{4}(x+1)-8$. Show your work (chart) and do not use a graphing calculator.

Domain: \qquad
Range: \qquad
Asymptote(s):
11. Solve. Check for extraneous roots.
a) $\log _{6}(x-3)+\log _{6}(x+6)=2$
b) $\log x+\log (x-1)=\log (4 x)$
12. Solve. Express your answer as an exact value (with logs) and as a decimal value correct to the nearest hundredth.
a) $3^{2 x+1}=75$
b) $2^{2 x-5}=6^{x+2}$
13. A water filter removes 40% of the impurities in a sample of water.
a) Write an exponential equation to determine the percent of impurities remaining, P, after the water has passed through n filters.
b) What percent of impurities will remain after the water has passed through 3 filters?
c) How many filters are needed to remove at least 99% of impurities in the water?
14. According to Kleiber's law, a mammal's resting metabolic rate, R, in kilocalories per day, is related to its mass, m, in kilograms, by the equation

$$
\log R=\log 73.3+0.75 \log m
$$

Predict the mass of a wolf with a resting metabolic rate of $1050 \mathrm{kCal} /$ day. Answer to the nearest kilogram.

