Launch it.
 Fling it. Shoot it.

Three scenarios.

They all hit from a height of 1 meter. Which hits the ground first (ball, slug, bullet)?

Sketch a displacement vs time graph for the following:

Forward constant velocity	Forward acceleration
Backward constant velocity	Backward acceleration
Forward deceleration	Backward deceleration
Object at rest	

Sketch a velocity vs time graph for the following:

Forward constant velocity	Forward acceleration
Backward constant velocity	Backward acceleration
Forward deceleration	Backward deceleration
Object at rest	

Kinematics is the study of motion.

As such - it is a very formula dependent section. There are 4 main ones.
In general,

$$
d=v t
$$

But what if the velocity is not constant?

If my acceleration is constant (and it will be) then my velocity will increase at a constant rate.

$$
d=\frac{v_{f}+v_{0}}{2} t
$$

Since acceleration will be taken to be constant:

$$
v=a t
$$

Compare this to the general formula for a line...

Probably our most useful formula (the sum of a box and a triangle).

$$
d=v_{0} t+\frac{a t^{2}}{2}
$$

Our final formula is a consequence of the Law of Conservation of Energy.

$$
v_{f}^{2}=v_{0}^{2}+2 a d
$$

To find how this formula comes to be solve these formulas for t .

$$
d=v t \text { and } v=a t
$$

You should be able to go through the practice problems and quick check of section 2.1
*number 8 on page 54 may be tricky - vector decomposition will help you. It is not necessary to do this one. Consider it "funsies".

