Gravitational Ep and infinity

We need a new place to define Ep, that place is infinity <= infinitely far from all masses.

$$
\epsilon_{p}=-\frac{G m_{1} m_{2}}{r}
$$

New formula for Ep based on $\mathrm{Ep}=0 \mathrm{~J}$ at infinity

Calculate the Ep of a 5000 kg cat at a distance of $3.0 \times 10^{7} \mathrm{~m}$ from Earth's centre.

$$
\begin{aligned}
\epsilon_{p}=-\frac{G m_{1} m_{2}}{r} & =\frac{-6.67 \times 10^{-11}(5000)\left(5.98 \times 10^{24}\right)}{3.0 \times 10^{7}} \\
& =-6.65 \times 10^{10} \mathrm{~J}
\end{aligned}
$$

Work done:

$$
\begin{aligned}
& \text { USE THE WORK ENERGY THEOREM!! }
\end{aligned}
$$

A mass of 5000 kg is moved from $2.0 \times 10^{7} \mathrm{~m}$ distance to $3.0 \times 10^{7} \mathrm{~m}$ distance (all distances are from centre of Earth), find the work done.

$$
\begin{aligned}
& m=5000 \quad 2 \times 10^{7} \rightarrow 3 \times 10^{7} \quad L_{9} W=? \\
& W=B E=E_{p f}-E_{p 0}=\frac{-6.67 \times \cdot 0^{-11}(5000)\left(5.98 \times 10^{24}\right)}{3 \times 10^{7}}+\frac{6.67 \times .0^{-11}(5000) 5.45 \times 10^{24}}{2 \times 10^{7}} \\
&=3.32 \times 10^{10} \mathrm{~J}
\end{aligned}
$$

A 10 kg cat on the surface of the Earth has $4.0 \times 10^{8} \mathrm{~J}$ of work done on it, to what maximum height will it rise?

A 10 kg cat on the surface of the Earth has $4.0 \times 10^{8} \mathrm{~J}$ of work done on it, to what maximum height will it rise?

The Law of Conservation of Energy still applies:
$E p o+E k o=E p f+E k f+Q$ but $Q=0 J$

Typical situations involve:
a) An object moving in space crashing into the Earth (any planet)
b) An object moving in space to some closer distance to the Earth (any planet)
c) An object on the Earth moving into space
comet/neteor/aster void

A comet of mass $1.0 \times 10^{7} \mathrm{~kg}$ is $4.0 \times 10^{9} \mathrm{~m}$ from Earth's centre, it is moving at $2500 \mathrm{~m} / \mathrm{s}$ and crashes into the Earth's surface, what is the impact speed?

Conservation of Energy.

$$
\begin{aligned}
& \epsilon_{p o}+\epsilon_{k 0}=\epsilon_{p f}+\epsilon_{k f} \\
& -\frac{G r_{1}, m_{2}}{r_{0}}+\frac{p r u v_{2}^{2}}{2}=-\frac{G m, m / 2}{r_{f}}+\frac{p V_{f}^{2}}{2} \\
& -\frac{6.67 \times 10^{-11}\left(5.98 \times 10^{211}\right)}{4 \times 10^{9}}+\frac{2500^{2}}{2}=-\frac{6.67 \times 10^{-11}\left(5.98 \times 10^{241}\right)}{6.38 \times 10^{6}}+\frac{V_{f}^{2}}{2} \\
& \quad V_{f}=11.4^{\mathrm{kn}} \mathrm{~s}
\end{aligned}
$$

A cat is blasted off of the moon at $1.3 \mathrm{~km} / \mathrm{s}$ from the surface, to what height Will it rise before coming to rest?
$h=$?

$$
\epsilon_{p o}+\epsilon_{k_{0}}=\epsilon_{p f}+\epsilon_{k f}
$$

$$
-\frac{6.67 \times 10^{-11}\left(7.35 \times 10^{22}\right)}{1.74 \times 10^{6}}+\frac{\left(1.3 \times 10^{3}\right)^{2}}{2}=-\frac{6.67 \times 10^{-11}\left(7.35 \times 10^{22}\right)}{r}
$$

$r=2.49 \mathrm{Mm}$

$$
\begin{aligned}
h & =2.49 \times 10^{6}-1.74 \times 10^{6} \\
& =750 \mathrm{~km} .
\end{aligned}
$$

Escape Velocity: is defined as the velocity at a planet's surface necessary To ESCAPE to infinity, you can stop when you reach infinity. Escape Velocity Is found using Conservation of Energy

$$
\begin{aligned}
\epsilon_{p o}+\epsilon_{k 0} & =\epsilon_{p f}+\epsilon_{k f} \\
\frac{-G m_{1}}{r_{0}}+\frac{w_{2} v^{2}}{2} & =0+\square \\
\frac{v^{2}}{2} & =\frac{G_{m}}{r_{0}} \\
v & =\sqrt{\frac{2 G_{m}}{r_{0}}} \\
& =\sqrt{\frac{2\left(6.67 \times 10^{-11}\right)\left(5.98 \times 10^{24}\right)}{6.38 \times 10^{6}}} \\
& =11.2 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

In ORBIT there is a relationship betuer
$\frac{\epsilon_{p}}{2}$ and $\frac{\epsilon_{k}}{2}$.

$$
F_{c}=F_{y}
$$

$$
E_{k}=\frac{m v^{2}}{2}=\frac{m}{2} \frac{G m}{r}
$$

$$
\begin{aligned}
& r_{c}=r_{g} \\
& m\left(\frac{v^{2}}{r}\right)=\frac{G m_{1} m_{2}}{r^{2}} \\
& v^{2}=\frac{G m}{r} \\
& \begin{aligned}
\frac{t_{k}}{-\frac{\cdots}{2}} & =\frac{1}{2} \frac{\dot{r}}{r} \\
& =\frac{G r m_{2}}{\partial r} \\
\epsilon_{p} & =-\frac{G m m}{r} \\
& \Rightarrow
\end{aligned} \\
& \therefore E_{k}=-\frac{1}{2} E_{p} \\
& \text { mind }=\text { blown }
\end{aligned}
$$

