

$$
y^{\prime}=\frac{1}{x^{\prime \prime}}
$$

This is a mathematical shortcut to make life easy for you involving ratios. It is useful any time a formula has some variable:

$$
Y=\frac{\#}{x^{2}}
$$

$$
\vec{s}=\frac{6 n}{r^{2}}
$$

$$
v / t=a
$$

$$
\text { to } x^{2} y \propto \frac{a}{x^{2}}
$$

$$
v=a t
$$

v is proportional
Imagine some value of v, double the value you imagined, what to time. happens to a?

Forget your chosen values for v, instead choose a value for t. Then double that value for t, what happens to a?
if you double one, you
doable the other.

$$
\left\lvert\, \begin{aligned}
& F_{e}=\frac{k q_{1} q_{2}}{r^{2}} \\
& \vec{E}=\frac{k q}{r^{2}}
\end{aligned}\right.
$$

$F_{c} r=m \quad$ choose a value for v, that gives a value for m. double v

$$
\begin{aligned}
F_{c} & =m a \\
& =m\left(\frac{v^{2}}{r}\right)
\end{aligned}
$$

$$
m=\frac{F_{1} r}{(2 v)^{2}} \rightarrow \frac{1}{4}
$$

$$
\mathrm{Fg}=\frac{\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}
$$

Notice Fg depends on $1 / \mathrm{r}^{2}$ any formula where a variable depends on

Calculate the force of gravity on a 200 kg which is $4 \times 10^{8} \mathrm{~m}$ from the center of the Earth.

$$
\begin{aligned}
& \text { f gravity on a } 200 \mathrm{~kg} \text { which is } 4 \times 10^{8} \mathrm{~m} \text { from the } \\
& F_{y}=\frac{6.67 \times 10^{-11}(200)\left(5.98 \times 10^{24}\right)}{\left(4 \times 10^{8}\right)^{2}}=5 \mathrm{~N}
\end{aligned}
$$

Inverse Square Law: a mathematical short cut to Kg, g, Fe, E, Intensity
Lat on Garth's surface $F_{j}=500 \mathrm{~N}$
If it is moved twice that distance What is Fg_{g} ?

$$
\begin{aligned}
& \frac{F_{g_{1}}}{F_{g_{2}}}=\frac{\left(2 r_{1}\right)^{2}}{r_{1}^{2}} \quad \frac{500}{F_{g_{2}}}=\frac{4 x_{2}}{x^{2}} \\
& F_{g_{2}}=\frac{500}{4}=125 \mathrm{~N}
\end{aligned}
$$

Calculate the force of gravity on the same object when at $8 \times 10^{8} \mathrm{~m}$ from thy Earth.

$$
\begin{aligned}
& \text { m the Earth. } \\
& \overbrace{r} \frac{(2 r)^{2}}{F_{s_{2}}}=\frac{.5}{r^{2}} \quad \frac{4 r^{2}}{F_{g_{2}}} \quad F_{y_{2}}=\frac{.5}{4} \\
&=.125 \mathrm{~N}
\end{aligned}
$$

$$
(l r) \quad F_{s_{2}} r \quad r_{s_{2}} \quad=.125 N
$$

useful for finding the gravitational field (g)

An exoplanet has gravitational field of $15 \mathrm{~N} / \mathrm{kg}$ at its surface. What will be its gravitational field strength at 3 radii from the center.

$$
\begin{array}{ll}
\vec{g}=\frac{G m}{r^{2}} & \text { hint: } 1.67 \frac{\mathrm{v}}{\mathrm{~kg}_{g}} \\
g_{1}=\frac{G m}{r^{2}} & \frac{g_{1}}{g_{2}}=\frac{(3 r)^{2}}{r^{2}}
\end{array} \frac{15}{g_{2}}=\frac{9}{1}, ~ g_{2}=1.67 \frac{\mathrm{~N}}{\mathrm{~kg}} .
$$

A star has a planet orbitting it, and experiences a force of gravity of $5.0 \times 10{ }^{40} \mathrm{~N}$ between the two. If the separation magically doubled how many times greater is Fg1 compared to Fg2?

$$
\begin{aligned}
& \text { s greater is Fg1 compared to Fg2? } \\
& \text { and, what is } \mathrm{Fg}_{2} \quad \text { hint : } F_{g_{2}}=1.25 \times 10^{40}
\end{aligned}
$$

The force on a mass on Jupters surface is 100 N . What is the force at 5 times the distance?
distance!
hint: $4 N$

$$
\frac{100}{5^{2}}=4
$$

Inverse Square Law

Work from

$$
r \rightarrow 2 r
$$

\rightarrow Area under the graph

Cool Question

An Electric motor outputs 1500 W of power Pulling a 70 kg crate of fish up a very slippery loading ramp at a constant speed. The ramp is inclined 31 degrees to the horizontal. Determine the speed of the crate. (ignore friction)

$$
\begin{aligned}
& V=? \\
& \text { hint }: 4.29 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& F_{\text {down }}=m g \sin (\theta) \\
&=70(9.8) \sin (31) \\
&=353 \mathrm{~N} \rightarrow F_{\text {up. }} \quad \text { (constant velocity) } \\
& P=\frac{w}{t} \\
& 1500=\frac{W}{t} \\
& 1500 t=F d \\
& 1500=353\left(\frac{d}{t}\right) \\
& 1500=353 \mathrm{~V} \\
& \frac{1500}{353}=\mathrm{V} \\
& 4.29 \frac{\mathrm{~m}}{\mathrm{~s}}=\mathrm{V}
\end{aligned}
$$

