Neil's Bohr Rap

Atom Review

The atomic number is ALWAYS the same as the number of protons in a nucleus

To calculate the number of neutrons:

1. Round off the atomic mass
2. Calculate: Atomic mass - atomic number $=$ neutrons

- Example:
- Chlorine - Atomic mass = 36, Atomic \# = 17
- $36-17=19$ (the number of neutrons)
- You try with Barium - Atomic mass = 137, Atomic \# = 56
- $137-56=81$

Vocabulary Review

What is the difference between an "atom" and an "ion"

- "atom" is always neutral: the same number of protons (+) and electrons (-)
- An "ion" always has a charge:
more protons than electrons (cation $=+$ charge)
O more electrons than protons (anion $=-$ charge)

Vocabulary Review

What is a valence shell?

- The outermost shell of electrons

What is a valence electron?

- Any electrons that occupy the outermost shell... These are the electrons that are involved in bonding

What is an "octet"?

- When the valence shell has 8 electrons - the most stable condition for the second or third shell.

Draw the Bohr model of a Sodium atom and a

 Sodium ion (Hint: The symbol for sodium is Na)
Atom:

Lost one electron
-Now there are 11 protons, but only 10

with a charge of $1+$

Bonding

Two types....

Ionic or Covalent

Forming Bonds

When two atoms get close together, their valence electrons interact.

- Each atom in the compound wants a stable number of valence electrons (like the nearest noble gas).

Lithium gives up an electron to become as stable as helium (valence shell of 2)

Fluorine accepts an electron from lithium to become as stable as neon (valence shell of 8)

Helium, neon and argon are atoms which do not react with other atoms because they each have a full outer electron shell (valence shell).

We call them the Inert Gases (or Noble Gases) because of this.

| $\operatorname{Ar} \begin{array}{c}4 \\ 0 \\ 8 \\ 2,8,8\end{array}$ |
| :---: | :---: |

Ionic Bonding

When the valence electrons of a metal and a non-metal come close to each other the METAL may LOSE its valence electrons and the NON-METAL may GAIN valence electrons

For example:
Na has 1 electron in its valence shell, Cl wants one more electron because it has 7
Na (the metal) will give its extra electron to Cl (the non-metal) so that they BOTH have the most stable electron shells

The Sodium atom has 1
Na Electron in it's outer shell.

The Sodium loses 1 electron to leave a complete outer shell.

It is now a Sodium ion with a charge of 1 +
$\left(\mathrm{Na}^{+}\right)$
$(2,8)^{+}$
Ion

Electron count: 2,8,1 Atom

The Chlorine atom has 7 electrons in it's outer shell.

Cl
Electron count: 2,8,7 Atom

The Chlorine gains 1 electron to gain a complete outer shell.

It is now a Chlorine ion with a charge of 1 -

The Ionic Bond

Sodium atom
Na

Sodium ion
($\mathrm{Na}{ }^{+}$)

Chlorine atom Cl

Chlorine ion
(Cl^{-})

The sodium atom loses one electron to get a complete outer shell and becomes a positive ion ($\mathrm{Na}{ }^{+}$).

The Chlorine atom gains one electron to attain a complete outer shell and becomes a negative ion (Cl^{-}).

Strong electrostatic forces attract the sodium and chlorine ions to each other = AN IONIC BOND

Ionic Bonding Video

