
Ionic Compounds

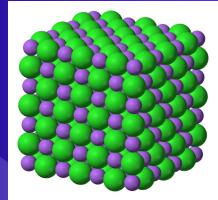
Why are they formed? How do we go about naming and writing formulae?

Water molecule, H2O

Compounds

- Recall from the last section that compounds are:
 - Pure substances that contain more than one type of atom chemically combined in the same proportions
 - In other words compounds contain the same elements and always in the same whole number ratio

Chemical Formulae


Like elemental symbols, scientists use chemical formulae to provide information about compounds:

- Describes what elements are present in a
- chemical compound
- •Gives the relative proportions of those elements

Examples:

- 1. CaCl₂- contains one atom of calcium and 2 atoms of chlorine
- Mg(OH)₂ contains one atom of magnesium, <u>two atoms</u> of oxygen, and <u>two atoms</u> of hydrogen

Ionic Compounds

- Contain a metal (becomes a cation) and a non-metal (becomes an anion)
- Are held together by the attraction of oppositely charged ions, formed by an electron transfer
 - All of the positives and negatives organize nicely.
 - Negative-positive attract
 - Negative-negative and positive-positive repel

Naming Ionic Compounds

The name of an ionic compound = cation + anion-ide

- For example, an ionic compound forms between magnesium and oxygen
 - The cation is the first part of the name, <u>magnesium</u>

• The anion forms part of the ending of the name, <u>oxygen</u>

- Add <u>-ide</u> to the end of the name to form
- <u>MAGNESIUM</u> <u>OXIDE</u>.

Pionic formulas are based on the ions of the atoms involved!

• For example, what is the name of Ca₃N₂?

- Ca, the cation, is calcium Ca²⁺
- N, the anion, is nitrogen N³⁻
- Drop the end of the anion and add –ide
- The name of the compound is <u>Calcium</u> <u>Nitride</u>

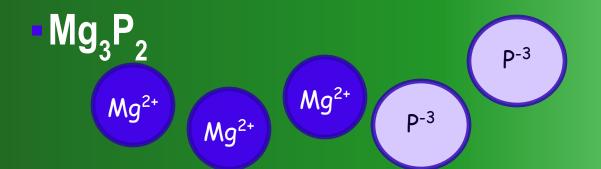
N⁻³

N⁻³

What do you notice about the number of positive charges and the number of negative charges based on its formula???

Ca²⁺

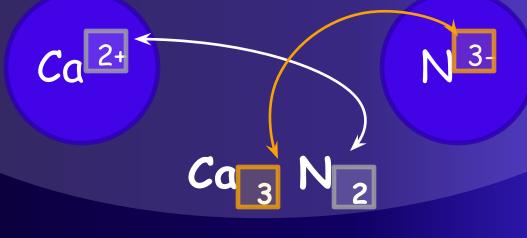
Ca²⁺


Ca²⁺

Writing formulas for ionic compounds

•As we just noticed, in ionic compounds the positive charges balance out the negatives so that the compound is neutral

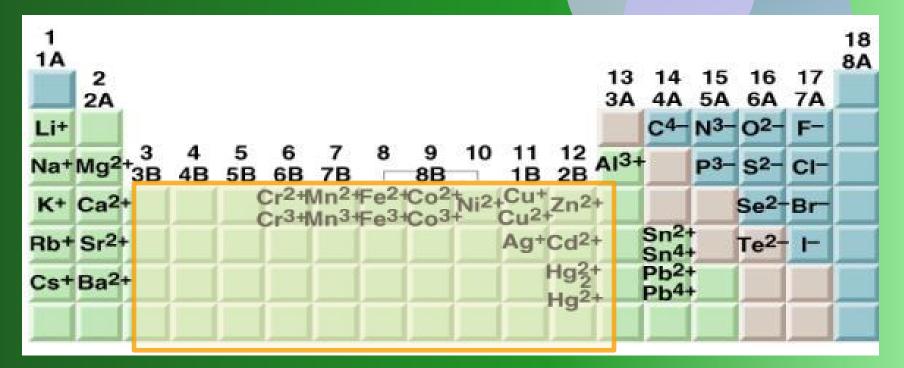
- The ratio of positive : negative charges gives the proper formula
 - The ratio is always written in reduced form
 - For example, what is the formula for magnesium phosphide?


Magnesium Phosphide Magnesium is Mg²⁺ Phosphorous is P³⁻ Lowest common multiple of 2 and 3 is 6 3 Mg²⁺ ions and 2 P³⁻ ions

Do you notice anything about the charge on the cation and the number of atoms of the anion? (and vice versa?)

A short-cut... The "Criss-cross Method"

 Another way to predict the formula is to "criss-cross" the charge on the cation to produce the number of anions required (i.e. the subscript behind the anion), and vice versa


Now you try: Predict the formula for CALCIUM OXIDE

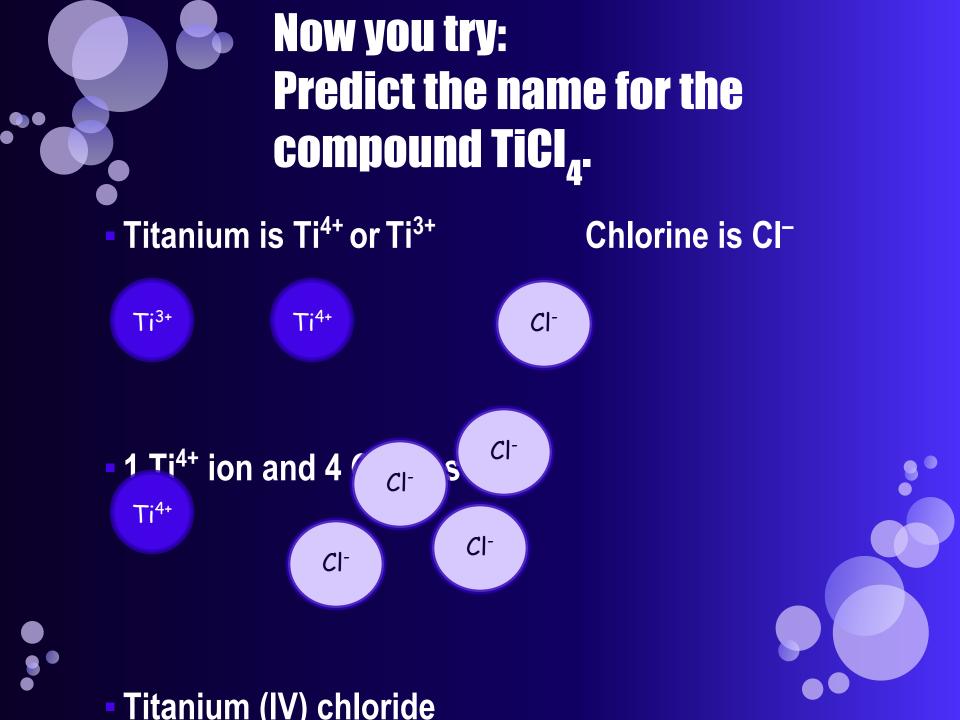
Calcium is Ca^{2+} oxygen is O^{2-} Ca^{2+} O^{-2}

- 1 Ca²⁺ ion and 1 O²⁻ ion
- Therefore the compound is CaO
- If you were "criss-crossing" the charges on the ions you would predict: Ca₂O₂,
 - This is simplified to CaO

Multivalent metals

Some transition metals are <u>multivalent</u>, meaning they have more than one ion form. •In the name of the compound, <u>Roman</u> <u>Numerals</u> are used following the cation to indicate which ion was used

Example: Formula for a multivalent ionic compounds

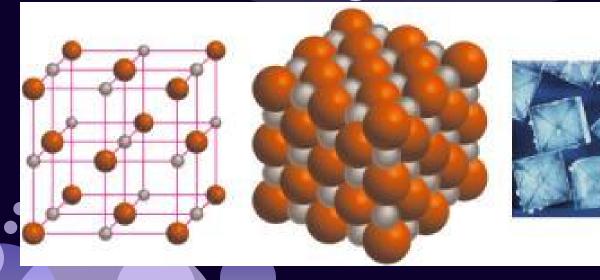

For example:

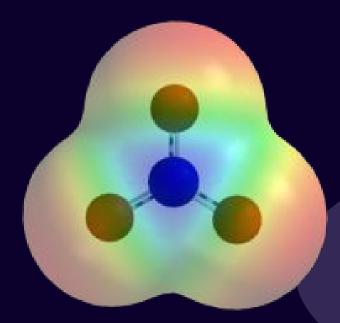
What is the formula for Manganese (III) sulphide?

25 2+ **Mn** 3+ 4+ Manganese 54.9

This manganese is Mn³⁺ Sulphur is S²⁻
Lowest common multiple of 3 and 2 is 6
2 Mn³⁺ ions and 3 S²⁻ ions

 $-Mn_2S_3$


Some Helpful Things!


- <u>http://www.youtube.com/watch?v=fQx_sDv</u>
 <u>JyQA</u>
- <u>http://www.youtube.com/watch?v=sByxtSI</u>
 <u>Hs34&feature=related</u>
- <u>http://www.youtube.com/watch?v=HETVLa</u> <u>QML5o&feature=related</u>
- <u>http://www.mpcfaculty.net/mark_bishop/io</u> <u>nic_nomenclature_tutorial.htm</u> just do 1st 7 on each

Ionic Compounds: Polyatomic Ions

Why are they formed? How do we go about naming and writing formulae?

POLYATOMIC ION

- A group of atoms that tend to stay together and act as one charged ion

Positive Ions NH ₄ + ammonium	Negative lons		
	CH ₃ COO ⁻ acetate	HCO3 ⁻ hydrogen carbonate, bicarbonate	NO ₂ - nitrite
22	CO ₃ ²⁻ carbonate	HSO ₄ ⁻ hydrogen sulphate, bisulphate	ClO ₄ ⁻ perchlorate
	ClO ₃ -chlorate	HS ⁻ hydrogen sulphide, bisulphide	MnO ₄ - permanganate
	ClO_2^- chlorite	HSO3 ⁻ hydrogen sulphite, bisulphite	PO4 ³⁻ phosphate
	CrO_4^{2-} chromate	OH ⁻ hydroxide	PO3 ³⁻ phosphite
	CN ⁻ cyanide	CIO ⁻ hypochlorite	SO42- sulphate
	Cr ₂ O ₇ ²⁻ dichromate	NO ₃ – nitrate	SO ₃ ²⁻ sulphite

Formulae containing polyatomic ions

• If more than one of a polyatomic ion is needed to balance charges, brackets are used to indicate you need more than one of the entire ion e.g. $Ca (OH)_2$ contains 2 hydroxide (OH-) ions to balance Ca²⁺

Examples: Predict the compound formed from:	
Na⁺ and OH⁻	NaOH
Mg ²⁺ and NO ₃ ⁻	Mg(NO ₃) ₂
NH4 ⁺ and SO4 ²⁻	$(NH_4)_2 SO_4$

Naming compounds containing polyatomic ions

 If there is a formula which contains more than two elements you must go to the data sheet to determine the polyatomic ion(s) in the formula and the name the group is given

e.g. Na₃PO₄ contains phosphate The name of the polyatomic is written unchanged!

Examples: Predict the compound name: Calcium carbonate CaCO₃ Potassium cyanide KCN Calcium phospha $Ca_3(PO_4)_2$

IMPORTANT: You must always remember to check for multivalent ions!

> • e.g. Fe(OH)₂ Iron can be Fe²⁺ or Fe 3+

> > So this compound is: Iron (II) hydroxide