1. The Canadian Motor Company makes two models of economy car, the Loon and the Moose. The company makes a profit of $\$ 400$ on each Loon that it sells and $\$ 300$ on each Moose. The labour requirements are given in the table below:

| Car | Assembly | Finishing | Testing |
| :--- | :--- | :--- | :--- |
| Loon | 150 h | 50 h | 10 h |
| Moose | 60 h | 40 h | 20 h |
| Totals |  |  |  |

During each production run, there are 30000 h available for assembly, 13000 h for finishing and 5000 h for testing. How many cars of each model should be made in order to maximize the profit of each production run?
a) Choose variables ( $x$ and $y$ ) for each car type: Loon: $\qquad$ Moose: $\qquad$
b) Write a constraint about assembly: $\qquad$ xint $\qquad$ yint $\qquad$
c) Write a constraint about finishing: $\qquad$
xint $\qquad$ yint $\qquad$
d) Write a constraint about testing: $\qquad$ xint $\qquad$ yint $\qquad$
e) Write the "objective" function about Profit: $\mathrm{P}=$ $\qquad$
f) Graph your constraints.
g) Show the coordinates of each vertex : $\mathrm{A}(, \quad) \mathrm{B}(, \quad) \mathrm{C}(, \quad \mathrm{D}(, \quad)$

g) Use your profit function to show the profits for each feasible combination:

Point A: $\mathrm{P}=$

Point B: $\mathrm{P}=$ $\qquad$ $=\$$ $\qquad$
Point $\mathrm{C}: \mathrm{P}=$ $\qquad$ $=\$$ $\qquad$

Point D: $\mathrm{P}=$ $\qquad$ $=\$$ $\qquad$

Which combination of cars produces the maximum profit? $\qquad$ Loons and $\qquad$ Moose.

