Multiplying and Dividing Radicals

Tuesday, April 12, 2016 2:35 PM

Multiplying and Dividing Radicals

This is very similar to how you would treat x and $y . x^{2}$ and x^{3}. We look for things the same...

$$
\begin{aligned}
& 2 x+x=3 x \text { but } 2 x+y=2 x+y \\
& x^{2}(x)=x^{3} \text { but } x^{2}(y)=x^{2} y
\end{aligned}
$$

Let's do this but with radicals instead of x, y. $2 \sqrt{2}$
$\underline{2 \sqrt{3} \cdot 4 \sqrt{6}}$
Here are the steps that we always want to follow:

1. Simplify
2. Multiply

$$
>\frac{g \sqrt{b}}{} \cdot \underline{c} \sqrt{d}=a c \sqrt{\bar{b} d}
$$

3. Simplify
$>$ Nothing can come out of the radical. $>$ No radicals in the denominator.

$$
\begin{aligned}
& 2(4) \sqrt{3(6)} \\
& 8 \sqrt{18}=8(3) \sqrt{2} \\
&=24 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad 3 \sqrt{5} \cdot 2 \sqrt{72} \\
& 3(2) \sqrt{5(72)} \rightarrow 6 \sqrt{360} \rightarrow \underset{\underbrace{}_{6}}{\sqrt{36(10)}} \\
& =\frac{36 \sqrt{10}}{}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \sqrt{2} \cdot 2 \sqrt[3]{2} \\
& \begin{array}{l}
3(7) \sqrt[3]{\sqrt[3]{2 x} \cdot 7 \sqrt[3]{5 x^{2}}} \sqrt{2 x\left(5 x^{2}\right)}
\end{array} \\
& 21 \sqrt[3]{10 x^{3}} \\
& \sqrt[3]{8} \\
& =\sqrt[3]{2 \cdot 2 \cdot 2} \\
& =2 \\
& 2 \sqrt{6}(\sqrt{5}-2 \sqrt{10}) \\
& 2 \sqrt{6(5)}-2(2) \sqrt{6(10)} \\
& 2 \sqrt{30}-\underbrace{4 \sqrt{60}}_{i y} \\
& 4 \sqrt{60} \\
& \begin{array}{l}
4 \sqrt{60} \\
=4(2) \sqrt{15}
\end{array} \\
& \begin{array}{l}
=4(2) \sqrt{15}
\end{array} \\
& \underbrace{(\sqrt{3}-4 \sqrt{5})(2+\sqrt{5})^{2}} \\
& =2 \sqrt{3}+\sqrt{15}-8 \sqrt{5}-4 \sqrt{5(5)} \\
& =2 \sqrt{3}+\sqrt{15}-8 \underline{\sqrt{5}}-4(5)
\end{aligned}
$$

Dividing radicals works the same way. We can follow the same steps as above. Just divide instead.

$$
\frac{8 \sqrt{15}}{2 \sqrt{3}}=4 \sqrt{\frac{15}{3}}=4 \sqrt{5}
$$

$$
\begin{aligned}
\frac{2 \sqrt{20}}{8 \sqrt{5}}=\frac{1}{4} \sqrt{\frac{20}{5}}=\frac{(1)}{4} \rightarrow \frac{\sqrt{4}}{1} & =(\sqrt{4}) \\
& =\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

$$
\frac{\sqrt{242^{2}}}{\sqrt{3 x}}=\sqrt{\frac{24 x^{2}}{3 x}}=\sqrt{8 x}=2 \sqrt{2 x}
$$

If we get a radical in the denominator, we have to ditch that Rationalize the denominator:

$$
\begin{aligned}
& \sqrt{\frac{5\left(2^{2}\right)}{10}}=-\sqrt{\frac{20}{10}}=2 \sqrt{10}=2 \sqrt{\frac{5}{10}}=2 \sqrt{\frac{1}{2}}=2 \frac{\sqrt{1}}{\sqrt{2}} \\
& =2\left(\frac{1}{\sqrt{12}}\right) \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2 \sqrt{2}}{2}=\sqrt{2} \\
& \frac{\sqrt{16}}{6}=.6456 \neq \frac{1.41}{\frac{5}{213}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{5 \sqrt{3}}{2(3)}=\frac{5 \sqrt{3}}{6}
\end{aligned}
$$

If there is more than just one term in the denominator, we need to bring out the conjugate!

Example:

$$
\begin{aligned}
& =\frac{20 \sqrt{3}+5 \sqrt{6(3)}}{16+\frac{(4 \sqrt{6})-(4 \sqrt{6})-\sqrt{6(6)}}{4}}=\frac{20 \sqrt{3}+5 \sqrt{18}}{16-6} \\
& =\frac{20 \sqrt{3}+5(3) \sqrt{2}}{10}=\frac{20 \sqrt{3}+15 \sqrt{2}}{10} \\
& \underbrace{\frac{6}{(\sqrt{5}+2 \sqrt{2}} \cdot \frac{\sqrt{5}-2 \sqrt{2}}{(\sqrt{5}-2 \sqrt{2})}}_{-6 \sqrt{5}-12 \sqrt{2}}=\frac{6 \sqrt{5}-12 \sqrt{2}}{5-2 \sqrt{10}+2 \sqrt{10} \cdot 4(2)} \\
& =\frac{6 \sqrt{5}-12 \sqrt{2}}{5-8} \\
& =\frac{6 \sqrt{5}-12 \sqrt{2}}{-3} 7^{\prime} a^{2} \\
& =-2 \sqrt{5}+4 \sqrt{2}
\end{aligned}
$$

HW: pg 289

```
# 1abcd,2,3,4,5ab,6,8ab,9ab,10
```

