Forces

A force is a push or a pull. Forces are measured in Newtons (N) after Sir Isaac Newton.

For example $F_{g}=$ ma where g is the acceleration due to gravity ($9.81 \mathrm{~m} / \mathrm{s}^{2}$ on Earth).

Normal force ('normal' is math speak for perpendicular).
F_{N} is a supporting force exerted by a surface at 90°.

$$
F_{n}=F_{g} \cos (\theta)
$$

Let's do an example: A 3 kg zombie head is chopped off and lands on a 30° slope. What is the normal force on the zombie head?

How would the normal force change if $\theta=0$ or $\frac{\pi}{2}$?

Force of Friction:
F_{f} is the grinding together of molecules. It resists intended motion.

$$
F_{f}=\mu F_{n}
$$

$\mu(\mathrm{mu})$ is the coefficient of friction. It describes how 'sticky' a surface is. 0 would have no friction, and 1 would be all the friction. If the number was above 1 it would be glue / tape.

A 5 kg zombie head is rolling down the ramp... This time we take into account friction $\left(F_{f}\right) . \mu=1.5$.

Elastic Force F_{e} :

$$
F_{e}=k \Delta x
$$

This is the force that tries to restore things that have been stretched or deformed.
k is the 'spring constant' and it is measured in N / m. High values $(10,000)$ for stiff objects and low values (10) for stretchy objects. x is the value you stretch the object in m.

The elastic limit is how much you can stretch an object before it will not go back to how it was.

A rubber band of length .15 m and a spring constant of $12 \mathrm{~N} / \mathrm{m}$ experiences a force of 5.0 N .
a) What is the amount it stretches?
b) What is the new length?

Last force today:
Force of Gravity F_{g} :
$F_{g}=m a$ works on Earth or very near the surface of the Earth. We want something more general...

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}}
$$

This is Newton's law of universal gravitation.
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$r=$ distance from centers of mass
Calculate the F_{g} on you on the moon.
$r_{\mathrm{m}}=1.74 \times 10^{6} \mathrm{~m}$
$\mathrm{m}_{\mathrm{m}}=7.35 \times 10^{22} \mathrm{~kg}$

Calculate the F_{g} between me, 135 kg , and my coffee, .5 kg .

