Name: \qquad

2 Day Probability Worksheet *An excuse to have an epic Field Trip to Clearwater

Is each event dependent or independent?

One tossed coin landing heads and the next landing tails.	
Rolling two sixes in a row on a number cube	
Drawing a red tile from a bag and then drawing a green tile after replacing the first tile	
Drawing a blue tile from a bag and then drawing a red tile without replacing the first tile	

These problems refer to rolling a number cube, then spinning a spinner with the letters
A-H on it. Find each probability. Show all work.
$\mathrm{P}($ rolling a 2, spinning an A$)$:
$P($ Rolling an even number, spinning a vowel):

P (rolling a number less than 3 , spinning a consonant):

Tell whether the events are independent or dependent and then find each probability. There are 5 gray, 4 red, 5 white, 2 green, and 2 navy marbles in a hat. Show all work.
$P(r e d$, not green) with replacement:

P (navy, white) without replacement:

P (gray, gray) with replacement:

P (gray, gray) without replacement:

You roll a cube with the numbers $13,16,18,20,22$, and 24 on it. You then spin a spinner which has 6 sections. The letters on the spinner are E, B, G, K, D, and H. Find each probability. Show all work.
$P(G$, prime number)

P(20, K)
$P(20, K)$

Suppose you tossed a number cube (die) 8 times and recorded your results. The recorded data shows you tossed 2 fives.
(a.) What is the experimental probability of tossing a 5 ?
(b.) What is the theoretical probability of tossing a 5 ?
(c.) Compare the probabilities.

Determine if events A and B are independent:
$P(A)=\frac{2}{5} P(B)=\frac{1}{5} P(A$ and $B)=\frac{2}{25}$
$P(A)=\frac{2}{5} P(B)=\frac{1}{4} P(A$ and $B)=\frac{1}{25}$
$P(A)=\frac{9}{20} P(B)=\frac{1}{2} P(A \mid B)=\frac{27}{50}$
$P(\operatorname{not} A)=\frac{3}{4} P(B)=\frac{3}{10} P(A$ and $B)=\frac{3}{40}$

Events A and B are independent. Find the missing probability.
$P(A)=\frac{1}{4} P(B)=\frac{3}{5} P(B \mid A)=$?
$P(A)=\frac{3}{10} P(B)=\frac{13}{20} P(A$ and $B)=?$
$P(A)=\frac{2}{5} P(A$ and $B)=\frac{3}{10} P(\operatorname{not} B)=$?

