Projectiles, further practice

Concepts:

I) What is the difference between the path of Type 1 and Type 2 projectiles?
II) Explain why Voy is zero for Type 1 projectiles.
III) Explain why ax is zero for all projectiles?
IV) After drawing the picture what should be the first step in solving a Type 2 projectile?
V) What formula is used to find time for all projectiles?
VI) What conditions are necessary to use the horizontal components to find time for a Type 1 projectile?
VII) What is the relation between $v_{o x}$ and v_{fx}, explain why this is.
VIII) How are $v_{f y}$ and $v_{f x}$ used to find the final velocity of any object?
IX) When should $v_{f}^{2}=v_{o}^{2}+2$ ad be used and when should $v_{f}=v_{o}+$ at be used to find the final vertical velocity?

Problems:

1) A physics student runs at $6.0 \mathrm{~m} / \mathrm{s}$ horizontally off a 10.0 m high diving board. What will be her range when landing in the water below?
2) A rock is tossed off a bridge horizontally at $9.0 \mathrm{~m} / \mathrm{s}$ and strikes the ground below 3.2 s later. How high is the bridge and what was the range of the throw?
3) A rifle is shot horizontally at $300 \mathrm{~m} / \mathrm{s}$ from a height of 1.8 m . What is the maximum distance the bullet will travel before hitting the ground?
4) Water sprays horizontally out of a shower head which is 2.12 m above the ground. If the water hits the shower floor 0.85 m from the wall of the shower how fast was the water coming out the showerhead?
5) A supply plane flying at $250 \mathrm{~m} / \mathrm{s}$ releases supplies 3900 m in front of survivors of a shipwreck. How high is the plane?
6) An Olympic javelin thrower releases the javelin at $30 \mathrm{~m} / \mathrm{s}$ at an angle of 40° above the horizontal. What is the range of the projectile?
7) While skateboarding a student leaves a jump at 20° and velocity $5.0 \mathrm{~m} / \mathrm{s}$, what will be the range of his jump?
8) A football kickoff is moving with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$ at 58° above the field, what is the range of the kick?
9) A small electric current zaps a frog causing it to jump at $2.0 \mathrm{~m} / \mathrm{s}$ on an angle of 30°, if the frog was in the middle of a $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ plate of copper will it get off the copper in one jump?
10) While studying a kangaroo at a distance a scientist notes the kangaroo consistently jumps on an angle of 35°. Careful measurements show the range of all jumps to be 4.0 m , with what was the velocity the kangaroo leaving the ground?
11) Calculate velocity when reaching the water of the student in $\# 1$.
12) What is the velocity of the bullet in \#3 when it has dropped a vertical distance of 1.0 m ?
13) For the football in \#8 what is the velocity at the maximum height?
14) What is the maximum height of the football in \#8?
15) Calculate the velocity of the kangaroo in \#10 after 0.30 seconds.

Answers

I) type 1

dx
type 2

II) because the projectile is launched horizontally
III) zero
IV) find $v_{o x}$ and $v_{o y}$
V) $d=v_{o} t+1 / 2 t^{2}$
VI) must be given $v_{o x}$ and $d x$
VII) they are the same because there is no acceleration in the x direction
VIII) pythagoras' theorem
IX) use $v_{f}{ }^{2}=v_{o}{ }^{2}+2$ ad when given $d y$, use $v_{f}=v_{o}+$ at when given time

1) $\mathrm{dx}=8.57 \mathrm{~m}$
2) $\mathrm{dy}=50.2 \mathrm{~m}, \mathrm{dx}=28.8 \mathrm{~m}$
3) $\mathrm{dx}=182 \mathrm{~m}$
4) $1.29 \mathrm{~m} / \mathrm{s}$
5) $\mathrm{dy}=1.19 \times 10^{3} \mathrm{~m}$
6) $d x=90.4 m$
7) $\mathrm{dx}=1.64 \mathrm{~m}$
8) $\mathrm{dx}=36.7 \mathrm{~m}$
9) yes
10) $6.46 \mathrm{~m} / \mathrm{s}$
11) $\mathrm{vf}=15.3 \mathrm{~m} / \mathrm{s}$
12) $\mathrm{vf}=10.6 \mathrm{~m} / \mathrm{s}$
13) $\mathrm{dy}=14.7 \mathrm{~m}$
14) $\mathrm{vf}=300 \mathrm{~m} / \mathrm{s}$ (still)
15) $5.35 \mathrm{~m} / \mathrm{s}$
