QF in Vertex form III

Sunday, February 28, 2016 12:20 PM

3.1 Quadratic Functions in Vertex Form: Part III

Recall: A quadratic function in vertex form can be expressed by:

$$
y=a(x-p)^{2}+q
$$

Ex. \#1: Graph the equation $y=2(x+3)^{2}-4$ on the grid below and answer the following questions.

Domain: $\{x \mid x \in \mathbb{R}\}$
Range: $\{y \mid y \geq-4, y \in \mathbb{R}\}$
Direction of Opening: \qquad up p

Steps: (stretches, reflections, moves)

Pre-Calculus 11

Ex. \#2: Graph the equation $y=-(x-1)^{2}+1$ on the grid below and answer the following questions.

Vertex: $(1,1)$
(ax) or Min: $y=1$
Axis of Symmetry: $x=1$

Domain: $\{x \mid x \in R\}$
Range: $\{y \mid y \leq 1, y \in \mathbb{R}\}$
Direction of Opening: down

Steps: (stretches, reflections, moves)

Pre-Calculus 11

Ex.\#3: State the equation in vertex form for the given graph.

Ex. \#4: State the equation in vertex form for the given graph.

$$
\begin{aligned}
& y=a(x-p)^{2}+q \\
& \operatorname{vertex}(2,2) \\
& \text { pt } \quad(0,0) \\
& a=-\frac{1}{2} \\
& y=\frac{(x-2)^{2}}{-2}+2
\end{aligned}
$$

Pre-Calculus 11

Ex.\#5: For the function $f(x)=-2(x+6)^{2}-11$ determine each of the following, without graphing.

Vertex: $\frac{(-6,-11)}{c}$
Axis of Symmetry: $X=-6$
Direction of Opening: down

Max or Min: $y=-11$
Domain: $\{x \mid x \in \mathbb{R}\}$
Range: $\{y \mid y \leq-11, y \in \mathbb{R}\}$

Steps: (stretches, reflections, moves)

$$
y=a(x-p)^{2}+q
$$

$$
\text { very e e }(p, q)
$$

$$
\begin{aligned}
& \text { Pg } 157 \\
& \# 3 b, c, d \\
& 4 \\
& 7 a, c, d \\
& 8 \\
& 10
\end{aligned}
$$

