Projectiles refers to any object which is launched into the air and only affected by the acceleration due to gravity after launching.

2 parts to any projectile situation <= vertical and horizontal Use the vertical part to find time*
All projectiles assume no air resistance
All projectiles' motion obeys the kinematic formulae

$$
\begin{equation*}
\mathrm{V}_{\mathrm{ave}}=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}} \quad \mathrm{a}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}} \tag{f}
\end{equation*}
$$

$\mathrm{Vf}^{2}=\mathrm{v}_{\mathrm{o}}{ }^{2}+2 \mathrm{a} \Delta \mathrm{d}$

$$
d=v_{0} t+1 / 2 a t^{2}
$$

Type I projectiles: all take the same form, a horizontally projected object off a raised surface:

It is absolutely essential that you maintain separation of horizontal and vertical components. Only time (t) is common between these.

A cat is fired horizontally at $10 \mathrm{~m} / \mathrm{s}$ off a 50 m high bridge, what will be its range, ?

$$
\begin{aligned}
& i y \quad y-\overline{2} \\
& -50=-4.9 t^{2} \\
& \sqrt{\frac{-50}{-4.9}}=t=13.19 \mathrm{~s}
\end{aligned}
$$

$$
\begin{array}{rl}
x & x-2 \\
= & 10(3.19) \\
= & 31.9 \mathrm{~m}
\end{array}
$$

What velocity will it hit the ground?

$$
V=a t
$$

$$
V_{f}-V_{i}=a t
$$

$$
\begin{aligned}
& V_{f}-V_{i}=a t \\
& V_{f_{y}}-0=-9.8(3.19) \\
& V_{f}=-31.3 \mathrm{~m}
\end{aligned}
$$

$$
V_{f x_{y}}=\sqrt{10^{2}+31.3^{2}}
$$

$=32.9 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\theta & =\tan ^{-1}\left[\frac{-31.3}{10}\right] \\
& =72 \mathrm{~S} \text { of } E
\end{aligned}
$$

If a_{x} is ALWAYS 0 then
A) What can be said about the time if I double the distance?
D) What can I say about the range if I double v_{x} ?

A flaming barrel of oil lies exactly 8.0 m from the base of a 6.0 m high KSS. With what horizontal velocity must cats be launched horizontally to splash directly into the barrel?

$$
\begin{aligned}
V_{0 x}=? & \text { 1) Find } t \\
d_{y} & =V_{\text {or }}+\frac{a t^{2}}{2} \\
-6 & =-4.9 t^{2} \\
\sqrt{\frac{-6}{-4.9}} & =t=1.15
\end{aligned}
$$

$$
\begin{aligned}
& d_{x}=V_{\text {ox }} t \\
& 8=V_{\text {ox }}(1.1) \\
& \frac{8}{1.1}=V_{\text {ox }}=7.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Determine the velocity of the cat when it lands in the barrel.

$$
\begin{aligned}
V_{y} & =a t \\
V_{f}-x_{i}^{0} & =a t \\
V_{f} & =(-9.8)(1.1) \\
& =-10.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& V_{f}=\sqrt{(-10.8)^{2}+(7.3)^{2}} \\
& =13 \mathrm{~m} \\
& \theta=\tan ^{-1}\left[\frac{14.8}{2.3}\right]
\end{aligned}
$$

* the only exception to using vertical to find t occurs when given BOTH d_{x} and v_{ox}

A cat is thrown off a bridge with a velocity of $4.0 \mathrm{~m} / \mathrm{s}$ (horizontally), it strikes the rail tracks a distance of 8.0 m from the base of the bridge, determine the height of the span,

$$
\xrightarrow[4]{\text { Q }} \quad d_{y}=? \quad d=V_{0} t+\frac{+t}{2}
$$

 $d_{y}=!$ $a=v_{0} t+\frac{4 \tau}{2}$

$$
\begin{aligned}
& \underline{x} \\
& d_{x}=V_{0 x} t \\
& 8=4 t \\
& 2 s=t
\end{aligned}
$$

$$
\begin{aligned}
\frac{y}{d y} & =v_{o y} t+\frac{a t^{2}}{2} \\
d y & =-4.9(2)^{2} \\
& =-19.6 \mathrm{~m}
\end{aligned}
$$

1,3,5 page 54

Type II projectiles
These projectiles are launched on angle over level ground, they go up, they come back down finishing at the same elevation...

Find X and Y comp's of $V o$
2) Find the time in air using vertical parts and $d=V o t+1 / 2$ a t^{2}
3) Find the range using horizontal parts and $d=\operatorname{Vot}+1 / 2$ a t^{2}
L) ind the max height using $V f^{2}=V o^{2}+2 a \Delta d$

A kitty cat cannon launches a cat at $50 \mathrm{~m} / \mathrm{s}$ on angle of 30° across a level surface, what is the range and max height?

$$
\begin{aligned}
& 50 \\
& v_{x}=50 \cos 30 \\
& =433 \\
& v_{y}=50 \sin 30 \\
& 0=25 t-4.9 t^{2} \\
& =25 \\
& d_{y}=V_{0 y} t+\frac{a_{y} t^{2}}{2} d r \\
& \begin{array}{l}
d_{x}=V_{0 x} t+\frac{a t^{2}}{2} \\
d_{x}=43.3(5.1)
\end{array} \\
& =221 \mathrm{~m} \\
& v_{f}^{2}=v_{1}^{2}+2 a d
\end{aligned}
$$

Find the range of a cat struck by a golf club leaving the ground at $40 \mathrm{~m} / \mathrm{s}$ on an angle of 60° to horizontal if you are male, 30° to horizontal if you are female.

A cat must be shot a range of 100 m from a cannon with a muzzle velocity $140 \mathrm{~m} / \mathrm{s}$, determine the angle at which the muzzle must be inclined.

A cat is shot from a cannon across level ground at $48 \mathrm{~m} / \mathrm{s}$ on an angle of 70° to the horizontal, find its maximum height and range!

A cat is kicked at $24 \mathrm{~m} / \mathrm{s}$ at 40° above the horizontal, find its max height and range. What is the cat's velocity at a height of 50 m ?

$$
y^{6} \mathrm{mp}=\sin 40 \cdot 24=15.4 \mathrm{mms}
$$

$$
d_{y}=V_{0 y}+-4.9 t^{2}
$$

$$
d x=V_{0 x} t+0
$$

$$
0=15.4 t-4.9 t^{2}
$$

$$
d x=18.4(3.14)
$$

$$
t=3.14 \mathrm{~s}
$$

$$
0 x=57.8 \mathrm{~m}
$$

$$
V_{F}^{2}=V_{0}^{2}+2 a d
$$

$$
0^{2}=15.4^{2}+2(9.8) d
$$

$$
j=12.1 \mathrm{~m}
$$

