Type iii projectiles

Wednesday, November 03, 2010 11:04 AM
A type 3 projectile is one which combine types 1 and 2 , the projectile has a change in height (like type 1) and is launched on an angle (like type 2). Yt still has $\mathrm{V}_{\mathrm{fy}}=0$ at the high point.

Easy way: find the final velocity in the y-direction for the projectile when It reaches the ground

After finding V_{fy}, then use it to find the time in the air

$$
V_{f}-V_{i}=a t
$$

1) corpoments

Find your range using t in the equation:

ALTERNATIVE METHOD:

A type iii projectile is a quadratic in terms of t

$$
\begin{array}{rlrl}
& d y=V_{0 y} t+\frac{a y t^{2}}{2} & \\
\rightarrow & -15=7.07 t+\frac{-9.8 t^{2}}{2} & & d=v t \\
4.9 t^{2}-7.07 t-15=0 & d_{x}=7.07(2.6) \\
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{} & =18.4 \mathrm{~m}
\end{array}
$$

$2 n$
 $=-1.17,2.6$

A cat is kicked at $20 \mathrm{~m} / \mathrm{s}$ at 30° above horizontal off a 20 m high building, find the time it spends in the air, the range, the final velocity at impact, max height (from ground) and velocity at the high point.

$$
\left.\begin{gathered}
=V_{i y^{2}}+2 \mathrm{ad} \\
10^{2}+2(-9.8)(-20) \\
V_{f y}=-22.2 \mathrm{~m} / \mathrm{s} \\
V_{f y}=\sqrt{V_{i}}=a t \\
-22 . z-10=-9.8 t \\
-22.2-10=t=3.29 \mathrm{~s} \\
-9.8
\end{gathered} \right\rvert\,
$$

$$
d=v_{x}+\frac{a \tau}{2}
$$

$\frac{083}{207}$

$$
\begin{aligned}
V_{x x} & =20 \cos (30) \\
& =17.3 \\
V_{0 y} & =20 \sin (30) \\
& =10
\end{aligned}
$$

$$
\begin{aligned}
& -20=10 t-4.9 t^{2} \\
& t=3.29,-1.24 \\
& 3
\end{aligned}
$$

range

$$
\begin{aligned}
d_{x} & =V_{0 x} t \\
& =17.3(3.29) \\
& =56.9 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& V_{r}=28.1 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \theta=\tan ^{-1}\left[\frac{22.2}{17.3}\right]=52^{\circ} \mathrm{Soft} .
\end{aligned}
$$

height

$$
\begin{aligned}
& v_{f y}^{2}=v_{i y}{ }^{2}+2 a d \\
& \left.0=10^{2}+2(-9.8)\right) d \\
& d=5.1 \mathrm{~m} \\
& \quad \text { height }=5.1+20
\end{aligned}
$$

A cat is launched at $40 \mathrm{~m} / \mathrm{s}$ at an angle of 60°, how far horizontally will it be displaced when reaching height 10 m ?

Q(0) $V_{0 x}=40 \cos 60=20$

$$
10=35 t-4.9 t^{2}
$$

$$
t=6.8, .29
$$

$$
\begin{aligned}
d_{x} & =v t \\
& =V_{0 x} t \\
& =20(.29) \\
& =5.8 \mathrm{~m} \\
d_{x} & =V_{0 x} t \\
& 0.11 .8)
\end{aligned}
$$

$$
\begin{aligned}
& =20(6.6) \\
& =136 \mathrm{~m}
\end{aligned}
$$

