$$
1+2=3
$$

Type III projectiles are off of a height (like type I) and have a v_{x} component (like type II).

We have 2 methods to use. Choose w/e you like.

1) Find $v_{\text {of }}$ with

$$
v_{f}^{2}=v_{0}^{2}+2 a d
$$

2) Use that to find t :

$$
v_{f}=v_{0}+a t
$$

3) Find d_{x} using:

$$
d_{x}=v_{0 x} t+\frac{a_{x} t^{2}}{2}
$$

*note how $\mathrm{a}_{\mathrm{x}}=0 \ldots$ that terms disappears.

1) Just use the quadratic equation to find time.

$$
\begin{gathered}
d_{y}=v_{0 y} t+\frac{a_{y} t^{2}}{2} \\
-\mathrm{c} \\
\mathrm{~b}
\end{gathered}
$$

2) Use this time in:

$$
d=v t
$$

Let's launch a zombie head off of a 15 m cliff at an angle of 45°. What is the range? 18.4 m

Method 2:

You can expect one type III on your test.
You should be able to do all the problems in the textbook now.

