Vectors Worksheet \#2

1. What is the resultant of a pair of forces, 100 N up, and 75 N down?
2. What is the resultant of the previous forces if they both act downward?
3. An airplane normally flies at $200 \mathrm{~km} / \mathrm{h}$ in still air. What is the resultant velocity if:
a. It experiences a $50 \mathrm{~km} / \mathrm{h}$ tail wind?
b. It experiences a $50 \mathrm{~km} / \mathrm{h}$ head wind?
4. You walk 30 m South and 30 m East. Draw a diagram of this vector addition and compute the resultant.
5. A ship leaves its home port expecting to travel to a port 500 km due South.

Before it can move, a severe storm comes up and blows the ship 100km due East. How far is the ship from its destination? In what direction must it travel to get there?
6. A hiker leaves camp and, using a compass, walks $4 \mathrm{~km}[\mathrm{E}], 6 \mathrm{~km}[\mathrm{~S}], 3 \mathrm{~km}[\mathrm{E}]$, $5 \mathrm{~km}[\mathrm{~N}], 10 \mathrm{~km}[\mathrm{~W}], 8 \mathrm{~km}[\mathrm{~N}]$, and $3 \mathrm{~km}[\mathrm{~S}]$. At the end of three days, the hiker is lost. Compute how far the hiker is from camp and which direction he should take to get back to camp.
7. Diane rows a boat at $8.0 \mathrm{~m} / \mathrm{s}$ directly across a river that flows at $6.0 \mathrm{~m} / \mathrm{s}$
a) What is the resultant speed of the boat?
b) If the stream is 240 m wide, how long will it take to row across?
c) How far downstream will Diane be?
8. Dave rows a boat across a river at $4.0 \mathrm{~m} / \mathrm{s}$. The river flows at $6.0 \mathrm{~m} / \mathrm{s}$ and is 260 m across.
a. In what direction, relative to the shore, does Dave's boat go?
b. How long does it take Dave to cross the river?
c. How far downstream is Dave's landing point?
d. How long would it take Dave to cross the river if there were no current?
9. Kyle is flying a plane due North at $225 \mathrm{~km} / \mathrm{h}$ as a wind carries it due East at $55 \mathrm{~km} / \mathrm{h}$. Find the magnitude and direction of the plane's resultant velocity.
10. Kym is in a boat traveling at $3.8 \mathrm{~m} / \mathrm{s}$ straight across a river 240 m wide. The river is flowing at $1.6 \mathrm{~m} / \mathrm{s}$
a. What is Kym's resultant velocity?
b. How long does it take Kym to cross the river?
c. How far is Kym downstream when she reaches the other side?
11. A weather station releases a weather balloon. The balloon's buoyancy accelerates it straight up at $15 \mathrm{~m} / \mathrm{s}^{2}$. At the same time, a wind accelerates it horizontally at $6.5 \mathrm{~m} / \mathrm{s}^{2}$. What is the magnitude and direction (with reference to the horizontal) of the resultant acceleration?
12. Kyle wishes to fly to a point 450 km due South in 3.00 h . A wind is blowing from the West at $50 \mathrm{~km} / \mathrm{h}$ Compute the proper heading and speed that Kyle must choose in order to reach his destination just in time.

