Average Velocity

Speed (v) is the distance an object travels during a given time interval divided by the time interval.

\checkmark Speed is a scalar quantity \checkmark The SI unit for speed is metres per second (m/s).

Speed

Remember... This is what is measured on your car's "speedometer"!

Velocity $(\underset{\nu}{ })$ is the displacement of an object during a time interval divided by the time interval.
\checkmark Velocity describes how fast an object's position is changing.
Velocity is a vector quantity and must include direction.
\checkmark The direction of the velocity is the same as the direction of the displacement.
The SI unit for velocity is metres per second (m / s).

Velocity

These two ski gondolas have different velocities because they are travelling in opposite directions!

The slope of a graph is represented by

 rise/run.This slope represents the change in the y-axis divided by the change in the x-axis. On a position-time graph the slope is the change in position () divided by the change in time (): Δd
The steeper the slope the greaterqee $\frac{\Delta d}{\text { change in displacement }}$ during the same time interval.

of a Position vs.

Graphing Position vs. Time...

The slope of a position-time graph is the object's average velocity.
Average velocity is the rate of change in position for a time interval.
The symbol of average velocity is:
On a position-time graph, if forward is given a positive direction:

- A positive slope means that the object's average velocity is forward.
- A negative slope means that the object's average velocity is backward.
- Zero slope means the object's average velocity is zero (i.e. the object isn't moving!)

Postion vs. Time

What is happening to the object between 0 and t_{1} ?

What is happening to the object between t_{1} and t_{2} ?

What is happening to the object between t_{2} and t_{3} ?

Average Velocity on a Graph...

The relationship between average velocity, displacement, and time is given by:

$$
\square_{\mathrm{av}}=\frac{\Delta \stackrel{\rightharpoonup}{d}}{\Delta t}
$$

Use tiv aove equation to answer the Tollowing questions.
What is the average velocity of a dog that takes 4.0 s to run forward 14 m ?

A boat travels 280 m east in a time of 120 s . What is the boat's average velocity?

Calculating Displacement

The relationship between displacement, average velocity, and time is given by:

$$
\Delta^{\prime} d^{\prime}=\left(V_{\mathrm{av}}\right)(\Delta t)
$$

Use the above equation to answer the following questions.

1. What is the displacement of a bicycle that travels $8.0 \mathrm{~m} / \mathrm{s}$ [N] for 15 s ?
2. A person, originally at the starting line, runs west at $6.5 \mathrm{~m} / \mathrm{s}$. What is the runner's displacement after 12 s?

Calculating Displacement

The relationship between displacement, average velocity, and time is given by:

$$
\Delta \dot{d}=\left(V_{a v}\right)(\Delta t)
$$

Use the above equation to answer the following questions.

1. What is the displacement of a bicycle that travels $8.0 \mathrm{~m} / \mathrm{s}$ [N] for 15 s ? (120 m [N])
2. A person, originally at the starting line, runs west at $6.5 \mathrm{~m} / \mathrm{s}$. What is the runner's displacement after 12 s ? (78 m west)

Calculating Time

The relationship between time, average velocity, and displacement is given by:

$$
\Delta t=\stackrel{\Delta}{\prime} d_{r}^{d}
$$

Use the above equation to answer the fotfowing questions.

1. How long would it take a cat walking north at $0.80 \mathrm{~m} / \mathrm{s}$ to travel 12 m north?
2. A car is driving forward at would it take this car to pa intersection that is 11 m long?

Calculating Time

The relationship between time, average velocity, and displacement is given by:

$$
\Delta t=\frac{\Delta d}{r}
$$

Use the above equation to answer the fellowing questions.

1. How long would it take a cat walking north at $0.80 \mathrm{~m} / \mathrm{s}$ to travel 12 m north? (15 s)
2. A car is driving forward at $15 \mathrm{~m} / \mathrm{s}$. How long would it take this car to pass through an intersection that is 11 m long? (0.73 s)

Calculating Velocity: Distance/Speed/Time Triangle

Distance $=$ Speed x Time

Distance (m) divided by time (s)
Gives VELOCITY (m / s)
Distance (m) divided by velocity (m / s)
Gives TIME (s)
Velocity(m / s) multiplied by time (s)
Gives DISTANCE (m)

Calculating Velocity:
Distance/Speed/Time Triangle

Converting between m / s and km/h

To convert from km / h to m / s :

- Change km to $\mathrm{m}: 1 \mathrm{~km}=1000 \mathrm{~m}$
- Change h to s: $1 \mathrm{~h}=3600 \mathrm{~s}$

Multiply by 1000 and divide by 3600

or

Divide the speed in km/h by 3.6 to obtain the speed in m / s.

Speed zone limits are stated in kilometres per hour (km/h).
For example, convert $75 \mathrm{~km} / \mathrm{h}$ to m / s.

$$
\frac{75 \mathrm{~km}}{1 \mathrm{~h}} \times\left(\frac{1000 \mathrm{n}}{1 \mathrm{~km}}\right) \times\left(\frac{1 \mathrm{~h}}{360 \mathrm{G}}\right)=2 \mathrm{~lm} /:
$$

Complete the two practice problems

Quick Quiz - average velocity, distance, time interval (Feb.16) Non-uniform Motion \& Acceleration (Feb. 16)
Review of the physics of motion (Feb. 20) (?Quiz on acceleration?) Big Bang Presentations (Feb. 22) Big Bang \& Motion Unit Test (Feb. 27)

Physics Unit Timeline

