

A nickel of mass 1.0 g is placed on a record of radius 12 cm , if the record rotates at 30 rpm (revolutions per minute) what minimum coefficient of friction is necessary to prevent the coin from sliding off?

$$
\begin{aligned}
& \begin{aligned}
m & =1.0 \mathrm{~g} \quad r=12 \mathrm{~cm} \quad 30=r \mathrm{pm} \\
30 \mathrm{rpm} & =\frac{30 \mathrm{cyc} \mathrm{cs}}{6 \text { osecols }}=.5 \mathrm{~Hz} \rightarrow f
\end{aligned} \\
& M g=4 \pi^{2} r f^{2} \\
& 4=\frac{4 \pi^{2}\left(12 \times 10^{-2}\right)(.5)^{2}}{9.8}=.12
\end{aligned}
$$

A lamborghini of mass 1000 kg travels through a corner of radius 50 m , at what maximum speed can it travel if the coefficient of friction is 0.85 between the tires and road?

$$
\begin{aligned}
& m=1000 \mathrm{~kg} \quad r=50 \mathrm{~m} \quad \mu=.85 \quad v=? \\
& F_{c}=F_{f} \quad V \\
& \frac{v^{2}}{r}=m \mathrm{yg} \quad \begin{array}{l}
\mu \mathrm{gr} \\
\\
\end{array} \quad=\sqrt{.85(9.8)(50)} \\
& \\
& =20.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Vertical Circles:
Draw the free body diagram, if you don't, you are choosing to get it wrong.

Rigid Structures (Ferris Wheal) or cat on pole:

$$
T_{o p} F_{c}=F_{y}-F_{n} \text { a cay for }
$$

Rigid Structures (Ferris Whépl) or cat on pole:

Top $F_{c}=t_{y}-r_{n}$ a cay from rc enter

$$
F_{\text {net }}=W-L
$$

\downarrow दtaurd cater
Bottom $F_{c}=F_{n}-F_{g}$

A ferris wheel is operating with a period of 60 seconds and radius 15 m , calculate the normal force on a 70 kg mass at the top and bottom of the path.

$$
\begin{aligned}
& T=60 \quad r=15 \mathrm{~m} \quad F_{h}=? \quad m=70 \\
& \text { Lotop/buttom } \\
& F_{c_{\text {top }}}=F_{s}-F_{n} \\
& m a_{c}=m a-F_{n} \\
& 70\left(4 \pi^{2} r f^{2}\right)=70(9.8)-F_{n} \\
& F_{n}=674 \mathrm{~N} \\
& F_{c_{\text {Bot }}}=F_{n}-F_{g} \\
& \stackrel{\downarrow}{\mathrm{mac}} \\
& 70\left(4 \pi^{2} r f^{2}\right)=F_{n_{\text {Bot }}}-70(9.8) \\
& F_{\text {neut }}=698 \mathrm{~N}
\end{aligned}
$$

What minimus speed must riders have so that

What minimus speed must riders have so that upside down riders don't fall out?
The upside down ride: top point only

$$
\text { Av } x^{2}=K_{y} \text { 'e } 66 k_{y}=\text { mass }
$$

vomit comet

$$
\text { Weightless }=\quad F_{n}=0
$$

Objects (cats) swung on a rope:
The velocity of an object in vertical circle on a rope is usually NOT constant. It changes from the top to the bottom using the Law of Conservation of Energy.

The slowest you can be at the top; $F_{T}=0$

Top: there is a minimum speed
At the top of the circle and at that
Speed $\mathrm{F}_{\mathrm{T}}=0 \mathrm{~N}$
What minimum speed must you swing a 5 kg cat on a 10 m leash to go through the circle?

$$
\begin{aligned}
& F_{c}=F_{g}+F_{T} \\
& x a_{c}=\omega g \\
& \frac{v^{2}}{\sigma}=9 \quad \rightarrow v=3.13 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

What is the F_{T} when the cat reaches the bottom?

1) Use conservation of energy to find V @ bottom.

$$
\begin{gathered}
\$(9.8)(2)+\frac{\$(3.13)^{2}}{2}=0+\frac{8 V_{f}^{2}}{2} \\
v_{f}=7.0 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

2) $F=W-L$

$$
\begin{aligned}
& F_{C}=F_{T}-F_{g} \\
& m a_{c}=F_{T}-m g \\
& 5\left(\frac{7.0^{2}}{}\right)=F_{T}-5(9.8)
\end{aligned}
$$

$$
F_{T}=294 \mathrm{~N}
$$

