Word Problems

Everytime I see a math word problem it looks like this: If I have $\mathbf{1 0}$ ice cubes and you have $\mathbf{1 1}$ apples. How many pancakes will fit on the roof? Answer:
Purple because aliens don't wear hats.

Karlee can ride her bicycle twice as fast as Brooklyn. Brooklyn takes 1 hour longer than Karlee to ride a distance of 24 km .
How fast are Amy and Brooklyn
table $x=$ Brooklyn's velocity

$$
\text { able } \quad x=\text { Brooklyn's velocity } \quad t \quad \begin{array}{l|c|c|c}
& V & t \\
\hline \text { Earle } & 24 & 2 x & \frac{24}{2 x}
\end{array} \quad t=\frac{d}{V}
$$

$x=$ Brooklyn's velocity			
Karlee	24	$2 x$	$\frac{24}{2 x}$
Brooklyn	24	x	$\frac{24}{x}$

$$
\begin{aligned}
& d=v t \\
& t=\frac{d}{V} \\
& \text { NOV } \quad x \neq 0
\end{aligned}
$$

We need to make on equation. LCD $=2 x$

$$
\text { Brooklyn's time }=\text { Korlee's time }+1 \text { hour. }
$$

$$
\frac{24^{(2 x)}}{x}=\frac{24}{2 x}^{(2 f}+1^{(2 x)}
$$

$$
\begin{aligned}
24(2) & =24+2 x \\
\frac{24}{2} & =x \\
x & =12 \frac{\mathrm{~km}}{h_{r}} .
\end{aligned}
$$

Brooklyn travels at $12 \frac{\mathrm{~km}}{\mathrm{k}}$.

20 by
Dividing amber by a number gives the same result as dividing 12 by 2 less than the number.

Find the number. $\rightarrow X \subset$

$$
\begin{aligned}
& () \frac{20}{x}=\frac{12}{x-2} / 1 \\
& 20(x-2)=12 x \\
& 20 x-40=12 x \\
& 20 x-12 x=40 \\
& 8 x=40 \\
& x=\frac{40}{8}=5
\end{aligned}
$$

Dividing 108 by one more than a number gives the same result as dividing 72 by three less than the number.

What is the number? X

$$
N P V \rightarrow x \neq-1,3
$$

$$
\frac{108}{x+1}=\frac{72}{\sqrt{x-3}} \quad(x+1)(x-3) 08=\frac{12}{x+3}(x-3)(x+1)
$$

$$
108(x-3)=72(x+1)
$$

$$
108 x-324=72 x+72
$$

$$
108 x-72 x=72+324
$$

$$
36 x=396
$$

$$
x=\frac{396}{36}
$$

$$
x=11
$$

Gartion drove 404 km from Edmonton to Banff in the same length of time as Rylan took to drive 364 km from Edmonton to Jasper. Garrion drove $10 \mathrm{~km} / \mathrm{hr}$ faster than Rylan.

At what speed did Rylan drive? $\rightarrow X$

$$
\begin{aligned}
& d=v t \\
& \frac{t_{G}=t_{R}}{} \\
& t=\frac{d}{v}
\end{aligned}
$$

Ryan

$$
\begin{aligned}
(x+0)(x) \frac{404}{x+10} & =\frac{364}{x}(x)(x+10) \\
\text { NV } \rightarrow x & =0,-10
\end{aligned}
$$

$$
\begin{aligned}
404 x & =364(x+10) \\
404 x & =364 x+3640 \\
404 x-364 x & =3640 \\
40 x & =3640 \\
x & =\frac{3640}{40} \\
& =91 \frac{\mathrm{kn}}{\mathrm{~h}}
\end{aligned}
$$

Dylan drove at $91 \frac{k n}{\mathrm{hr}_{r}}$.

Two friends share a paper route. Hailey can deliver the papers in 40 mins . Mizuki can deliver the same route in 50 min .

How long, to the nearest minute, does the paper route take if they work together?

$$
\begin{aligned}
& \underline{5} t+4 t=200 \\
& \text { vt }=200 \\
& t=\frac{200}{9} \quad \pi=22 \text { miss. }
\end{aligned}
$$

HW: pg 349
\# 12,14,16,17

